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One-to-one Selections and Orthogonal
Transition Kernels

R. DANIEL MAULDIN*

ABSTRACT. Some questions concerning the existence of one-to-one selections
and Borel structures are discussed. It is shown that the translates of Wiener
measure form a completely orthogonal transition kernel and new examples
of orthogonality preserving kernels which are not compietely orthogonal are
given.

In this paper, I will briefly discuss two problems to which Dorothy Ma-
haram has made contributions by a combination of her results, talks and, not
least, her mischievous innocent sounding coffee table questions. 1 will also
raise some questions related to these problems.

1. One-to-one selections. The first problem concerns one-to-one selections.
To put the problems in context, recall some of the history of selections or
“uniformizations.” In 1904, Hadamard, in a letter discussing Zermelo’s ax-
iom of choice, raised the selection problem [2]. In essence, he asked what sort
of describable selector must exist for a given describable set. Lusin expanded
on this theme [3] and discussed this issue in his famous monograph [4]. One
of the early results concerning this problem is due to Lusin and Sierpinski:

THEOREM. Let B be a Borel subset of X x Y, where X and Y are Polish
spaces. Then B can be uniformized by a coanalytic graph.

In other words, there is a function f: proj;(B) — Y such that Gr(f) C B.
Of course, Kondo proved the ultimate theorem in this direction:

TureoreM. Let B be a coanalytic subset of X x Y, where X and Y are Polish
spaces. Then B can be uniformized by a coanalytic graph.

On the other hand, Novikov [9] showed that there is a Borel set which
cannot be uniformized by a Borel set. So, as our first side issue we address
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ourselves to the question of finding sufficient conditions for the existence of
a Borel uniformization or selector.

Novikov showed that if each fiber of B, By = {y{(x,y) € B}, is compact,
then B has a Borel selector. Also, Novikov and Lusin showed that if each fiber
of B is countable, then B possesses a Borel selector. Later these theorems were
extended by Arsenin, Kunugui, Scegol’kov and ultimately Saint-Raymond
[10]. Saint-Raymond proved the following beautiful

THEOREM. If each By is o-compact, then B =\ J.. | B, where each B, is a
Borel set and, for each x, B, is compact.

Saint-Raymond’s theorem was in turn extended by A. Louveau. Of course,
it follows from Saint-Raymond’s theorem that if B is a Borel set and each
B, is o-compact, then B has a Borel selector. Now, we modify and consider
a set mentioned by Hadamard {2). Let H = {(x,y) € R?| neither x nor y is
related to the other by a polynomial equation with integer coefficients}; i.c.,
y cannot be expressed as y = }:;; | @px? with integers a, and likewise for x.

Of course, H is a G subset of R? and each horizontal and vertical fiber of
H, being co-countable, is a dense G5 set.

In order to determine whether H has a Borel selector, let us take a general
approach. First, some definitions.

Let X and Y be uncountable Polish spaces and B a Borel subset of X x Y
such that for each x, B, is uncountable. A Borel parametrization of B is a
Borel isomorphism, g, of X x E onto B where E is a Borel subset of Y such
that for each x, g(x, ) maps E onto By = {y|(x,y) € B}. A transition kernel
is a map x — i, from X into the probability measures on Y such that for
each Borel subset 4 of ¥ x — pu,(A) is Borel measurable. In [1], I proved
the following:

THEOREM. Let X and Y be uncountable Polish spaces and let B be a Borel
subset of X x Y such that for each x, By is uncountable. The following are
equivalent

1. B has a Borel parametrization.

2. There is a transition kernel {ii;}xex such that for each x, u(x,B;) =1
and, for each x, u(x,-) is atomless.

3. B contains a Borel set M such that for each x, M, is a nonempty compact
perfect set.

It is easy to see that this theorem implies that H can be filled up by disjoint
Borel uniformizations.

If Hadamard’s question is slightly changed, we find unsolved problems
even after all these years. For example, using the axiom of choice, one can
prove the following:

THEOREM. There is a one-to-one map F of R x R onto H such that for each
v, [y defined by f,(x) = ny(F(x,y)} is a one-to-one map of R into R.
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In other words, H can be filled up by the graphs of pairwise disjoint injec-
tions of R into R.

QuEesTiON, Can the map F of the preceding theorem be taken to be Borel
measurable?

What we really want are some reasonable sufficient conditions under which
a Borel set can be filled up by one-to-one, or even, one-to-one and onto, Borel
selectors.

Dorothy Maharam and A. H. Stone [6] have made some progress on this
type of problem. For example, the next theorem is a special case of their
theorem concerning the approximation of measurable functions by those that
are aJso one-to-one.

THEOREM. Let X = Y = [0,1] and let B C X x Y be a Borel set, such
that B, has non-empty interior for every x € X. Then there exists a Borel
measurable one-to-one map f: X — Y with f(x) € By for every x € X.

This theorem remains true if X and Y are dense-in-themselves Polish
spaces.

Also, Siegfried Graf and I [1] proved the following.

THEOREM. Let B be a Borel subset of X x Y, u a probability measure on X
and v a probability measure on Y. Suppose that for u-a.e. x, By is uncountable
and, for v-a.e. y, BY = {x|(x,y) € B} is uncountable. Then there are Borel
sets D and R and a Borel measurable isomorphism, f, of D onto R such that
w(D) = v(R) = 1 and Gr(f) is a subset of B.

On the other hand, Graf and I give the following example in [1].

ExampLE. There is a Borel set B C [0, 1] x [0, 1] such that all fibers have
positive measure and yet B does not possess a one-to-one Borel selection.

It is still possible that the following category version holds.

CoNJECTURE, Let B be a Borel subset of [0, 1] x [0, 1] such that each hor-
izontal and each vertical fiber is comeager (= complement of a first category
set). Then B contains the graph of a Borel isomorphism. Perhaps B can be
parametrized by Borel isomorphisms?

Note. During the preparation of this article, G. Debs and R. Saint-
Raymond have signaled that first part of this conjecture is true at least in
case all the fibers are dense G; sets (to appear Amer. J. Math.).

2. Orthogonal Transition Kernels, The second problem I want to discuss
concerns the classification of the isomorphism classes of conditional proba-
bility distributions. We will say that two conditional distributions x — uy €
Pr(Y), x" v py € Pr(Y') are isomorphic provided there are Borel isomor-
phisms ¢: X — X' and y: Y — Y’ such that u.(E) = Uy (W(E)). We
will focus on orthogonal distributions. Maharam [5] pointed out one type of
behavior a family of orthogonal or mutually singular measures can exhibit.
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DEerFINITION., A family {#.} of measures on a o-field &% on a space X is
“uniformly orthogonal” means that for each «, there is some H, € % such
that po(X\H,) = ug(Hp) =0, if a # 8. :

Maharam gave the following example, and as usual began asking questions.

THEOREM. Assuming the continuum hypothesis, there is an uncountable
Jamily # of pairwise orthogonal Borel probability measures on the unit square
such that no uncountable subset of # is uniformly orthogonal.

One obvious question is: Can this phenomenon occur in a transition ker-
nel? Also, what do the pairwise orthogonal transition kernels look like?

J. Burgess and I gave a negative answer to the first question. The answer
is related to the second question. First a definition.

DEFINITION. A transition kernel x — u, € Pr(Y) is completely orthogonal
means there is a Borel subset B of X x Y such that for each x, p,(By) = |
and if x’ # x, then B, N B, = <.

In other words, a transition kernel is completely orthogonal provided there
is a Borel measurable map f: ¥ — X such that for each x, u,(f~1(x)) = 1.

Burgess and I proved that if u, is a pairwise orthogonal transition kernel,
then there is a compact perfect subset K of X such that {u, } ek is completely
orthogonal. A prime example of a completely orthogonal transition kernel
consists of the ergodic measures.

ExAMPLE. Let T be a continuous map of a compact metric space Y into
itself. Let X = Erg(7"), the set of all T-invariant ergodic probability measures
on Y. Then X is a Polish space {provided with the usual weak*-topology) and
the transition kernel x — u, given by the identity map on X is completely
orthogonal.

ProoFr. Let {V,}5°, be a base for the topology of ¥ and let {U,}2; be an
enumeration of the finite unions of elements of this base.

Let

1=
= Hm — T = u(V,
BH{WMUQWZFM M)#(ﬁ
Clearly, each B, is a Borel measurable and

#{Bpy) = 1.

B =(B..
The Borel set B completely separates the transition kernel: if u # 4/, then
B,N B, = ¢.
Weizsdcker and 1 give a second example arising in Brownian motion.
ExaMPLE. Let Y be ([0, 00) and let ¥ be Wiener measure on Y. Let H
be the group of autohomeomorphisms of [0, o). For each 2 € H, let

Hp = WOL;I,

Set
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where L, maps Y onto Y by
Lyp(f) = foh.

Clearly, & — py is a transition kernel. In order to see that this kernel is
completely orthogonal we will use the mean square variation.
Let {g,}2, enumerate the positive rational numbers. For each », let

B, = {(h, O if I, is the partition of [0, g,] into k£ congruent subintervals,

| Jim Y (f@) = Fli)? = h(?n)} -

Then, B =B, is a Borel subset of X x ¥ which completely separates u,.

In [8], Weizsdcker, Preiss and I gave a classification of completely orthog-
onal kernels. One of the main facts is that there is essentially only one such
kernel consisting of atomless measures. In particular, the kemels given in
the preceding two examples are isomorphic. We now turn to the possibility
of classifying kernels in terms of their functional analytic behaviour. It is
easy to see that if u, is a completely orthogonal kernel, then the mixture
map T determined by the kernel defines an orthogonality preserving or lattice
isomorphism of M(X), the Borel measures on X into M(Y). The map T is
defined by

Te(E) = [X 1(E) d(x).

Clearly, if 7 L o, then T(v) L T(o). It is an intriguing fact that the prop-
erty of being orthogonality preserving is not equivalent to being completely
orthogonal and only one example is known.

ProBLEM. How many isomorphism classes of atomless orthogonality pre-
serving kernels are there? In view of some of the results of [8], it could be
that the answer depends on the axioms of set theory.

ExampLE. Let Y =[]0, Y,, where ¥, = {i/2"|i = 1,2,...,2"} and con-
sider the spaces %7 (Y'), of compact subsets of ¥, and &(Y), of probability
measures on % (Y). We will need a generalized result of Blackwell in our
construction [8, Lemma 5.1].

THEOREM. Let A be a non-meager Baire property subset of Y. Then there
is a sequence (;) of positive numbers converging to 0 and a compact subset
K of A such that for every y° = (%) € Y, there is a probability measure u
satisfying p(K) = 1 and p({y: y: # y?}) < ti.

Now, for each #, let ¢, be the nth projection map of Y onto Y,,. Set

P = {(K,s) € Z(Y) x clvx €10, 113u {,u(K) =1

and Vifl¢f~x|du§s,]}.
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Let y(x) — (Kx,Sx, ix) be a Borel isomorphism of [0, 1] onto P x {0, 1} and
let x +— u, be a Borel map of [0, 1] into Z~(Y) such that for each x,

ﬂx(Kx) =1

and
@, — X 10 [y-INeasure.

According to Theorem 4.1 of [8], x — u, is an orthogonality preserving
kernel.
To see that u, is not completely orthogonal, set

G = {x|ix = 0}.

Claim. There does not exist a set A with the Baire property (much less a

Borel set) such that
0 xeG

wi)={ ] e

Let us assume A is not meager and 4 has the Baire property. Then ac-
cording to the preceding theorem, there are numbers x, y in [0, 1] such that
y(x) = (K,s,0) and y(y) = (K,s,1). Thus, x € Gand y € G. But,

tx(K) = 1 = py(K).

A wide class of examples of orthogonality preserving kernels which are not
completely orthogonal can be generated by modifying this procedure.
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