SETS GENERATED BY RECTANGLES R. H. BING, W. W. BLEDSOE, AND R. D. MAULDIN For any family F of sets, let $\mathscr{D}(F)$ denote the smallest σ -algebra containing F. Throughout this paper X denotes a set and \mathscr{D} the family of sets of the form $A \times B$, for $A \subseteq X$ and $B \subseteq X$. It is of interest to find conditions under which the following holds: (1) Each subset of $X \times X$ is a member of $\mathscr{B}(\mathscr{R})$ The interesting case is when $\omega_1 < \operatorname{Card} X \leq c$, since results for other cases are known. It is shown in Theorem 9 that (1) is equivalent to There is a countable ordinal α such that (2) each subset of $X \times X$ can be generated from \mathcal{R} is α Baire process steps. It is also shown that the two-dimensional statements (1) and (2) are equivalent to the one-dimensional statement There is a countable ordinal α such that for each family H of subsets of X with (3) Card H = Card X, there is a countable family G such that each member of H can be generated from G in α steps. It is shown in Theorem 5 that the continuum hypothesis (CH) is equivalent to certain statements about rectangles of the form (1) and (2) with $\alpha = 2$. Rao [7, 8] and Kunen [2] have shown that THEOREM 1. If Card $X \leq \omega_1$ (the first uncountable cardinal) then (1) is true and if Card X > c then (1) is false. The question of whether (1) is true (without the requirement Card $X \leq \omega_1$) was raised by Johnson [1] and earlier by Erdös, Ulam, and others (see [8], p. 197). The arguments in Kunen's thesis actually showed that if Card $X \leq \omega_1$ then Each subset of $X \times X$ can be generated (4) from \mathscr{R} in 2 steps (i.e., each subset is a member of $\mathscr{R}_{\sigma \delta}$. See definitions in § 2.). In Theorem 5 we generalize Theorem 1 and Kunen's result (4), and give a new characterization of CH by showing it to be equivalent to certain statements about rectangles of the form (1) and (4). If CH is assumed the α appearing in statements (2) and (3) above is 2 (see Theorem 10). This raises the intriguing (but unanswered) question of whether α must always be 2 if (1) holds and CH is false. It would also be interesting to know whether statements (1), (2), and (3) are equivalent to statement (5) below. Clearly (3) imples (5). (5) If H is a family of subsets of X with Card $H = \operatorname{Card} X$, then there is a countable family G for which $H \subseteq \mathscr{B}(G)$. The equivalence of (1) and (2) means for example, (assuming CH), that there is a countable family G from which all real Borel sets (or analytic sets, or projective sets) can be generated in two steps (i.e., Borel sets $\subseteq G_{ob}$). This is remarkable in view of the well known result [4, 8] that if G is a countable basis for the real topology, then the Borel sets cannot be generated from G in less than ω , steps. As a generalization of this well known result we show in Theorem 12 that any countable family G which is closed to complementation and which generates the Borel sets (i.e., Borel sets $\subseteq \mathscr{B}(G)$) must have order ω_1 . That is $$\mathscr{B}(G) \not\subseteq G_{\alpha}$$ for any countable ordinal α . Thus, even though G might generate the Borel sets in α steps (or 2 steps if CH is assumed), the process, nevertheless, continues to produce new members of $\mathscr{D}(G)$ until we reach G_{ω} . We would like to point out in conjunction with our characterization of CH that Kunen [2] has proved that if Martin's Axiom A holds (see [6]) and $\operatorname{Card} X \leq c$ then (4) holds. He also proved that if $\omega_1 < \operatorname{Card} X \leq c$ then (1) is independent of ZFC (Zermo-Frankel Axioms + the Axiom of Choice) together with the negation of CH. 2. Notation and definitions. If G is any family of sets, let G_0 be the family G, and for each ordinal α , $\alpha > 0$, let G_{α} be the family of all countable unions (intersections) of sets in $\bigcup_{r < \alpha} G_r$, if α is odd (even). Limit ordinals will be considered even. (Compare Kuratowski [3].) Thus we have $$G_0 = G$$, $G_1 = G_{\sigma}$, $G_2 = G_{\sigma \sigma}$, $G_3 = G_{\sigma \sigma \sigma}$, ..., $G_{\alpha \sigma}$, ... Also $G_{\alpha} \subseteq G_{\alpha+1}$ for each ordinal α and $G_{\omega_1} = G_{\omega_1+1}$, where ω_1 is the first uncountable ordinal. If $\alpha > 0$, then the family G_{α} is closed under countable unions (intersections) if α is odd (even). We define the order of G to be the first ordinal α , $\alpha > 0$, such that $G_{\alpha+1} = G_{\alpha}$. For each $A \subseteq X$ (or $A \subseteq X \times X$), let A' be the complement of A with respect to X (or $X \times X$), and for each family G of subsets of X (or $X \times X$) let $\mathcal{C}(G)$ be the family of complements of G. Note that if $\mathcal{C}(G) \subseteq G$, or even if $\mathcal{C}(G) \subseteq G_{\omega_1}$, then the family G_{ω_1} is the family $\mathcal{C}(G)$, the σ -algebra generated by G. Thus, since $$(A \times B)' = A \times B' \cup A' \times X \in \mathcal{R}_1,$$ it follows that $\mathscr{R}_{\omega_1} = \mathscr{B}(\mathscr{R})$. If G is a family of subsets of X, let $VG = \{A \times B : A \subseteq X, B \in G\}$, and let $HG = \{A \times B : A \in G, B \subseteq X\}$. If $Z \subseteq X \times X$ and $x \in X$, let Z_x denote the vertical section of Z at x, $Z_x = \{y : (x, y) \in Z\}$. 3. Results. The following lemma is easily proved by transfinite induction. LEMMA 2. If $1 \le \alpha < \omega_1$ and $A \in G_\alpha$, then there is a set B in G_1 such that $A \subseteq B$. THEOREM 3. If G is a countable family of subsets of X, $Z \subseteq X \times X$, and $0 < \alpha < \omega_1$, then $Z \in (VG)_{\alpha}$ if and only if $Z_z \in G_{\alpha}$ for each $x \in domain Z$. *Proof.* By considering the natural projections of the sets involved on the second coordinate axis, it is easily seen that if $Z \in (VG)_{\alpha}$, then $Z_x \in G_{\alpha}$ for each $x \in \text{domain } Z$. Now suppose that $Z_x \in G_\alpha$, for each $x \in \text{domain } Z$, and let $G = \{\theta_1, \theta_2, \theta_3, \dots\}$. We complete the proof by transfinite induction on α . Case 1. $\alpha = 1$. For each n, let $A_n = \{x \in \text{domain } Z: \theta_n \subseteq Z_x\}$, and let $Z_n = A_n \times \theta_n$. Then $Z_n \in VG$, for each n, and $$Z = \bigcup_{n=1}^{\infty} Z_n \in (VG)_1.$$ Now suppose $1 < \alpha < \omega_1$, and that the theorem holds for every γ , $0 < \gamma < \alpha$. Case 2. α is even. Let $\{\gamma_n\}_{n=1}^{\infty}$ be a sequence of odd ordinals less than α such that each odd ordinal less than α appears infinitely often in $\{\gamma_i\}_{n=1}^{\infty}$. For each $x \in \text{domain } Z$, let $$D_1(x), D_2(x), D_3(x), \ldots$$ be a sequence such that $D_i(x) \in G_{r_i}$ for each i, and $$Z_z = \bigcap_{i=1}^{\infty} D_i(x) .$$ This can be done in view of Lemma 2. For each i, let $$Z^i = \bigcup_{x \in \text{domain } Z} \{x\} \times D_i(x)$$. First note that $Z = \bigcap_{i=1}^{\infty} Z^i$. Also each nonempty section $(Z^i)_x$ of Z^i is equal to $D_i(x) \in G_{r_i}$. Hence, by the induction hypothesis, $Z^i \in (VG)_{r_i}$, for each i, and therefore $$Z=\bigcap_{i=1}^{\infty}Z^{i}\in (VG)_{a}$$, by the definition of the family $(VG)_{\alpha}$. Case 3. α is odd and greater than 1. For each $x \in \text{domain } Z$, let $\{D_i(x)\}_{i=1}^{\infty}$ be a sequence of members of $G_{\alpha-1}$ for which $Z_x = \bigcup_{i=1}^{\infty} D_i(x)$, and let $Z^i = \bigcup_{x \in \text{domain } (Z)} \{x\} \times D_i(x)$, for each i. Again it follows that $Z^i \in G_{\alpha-1}$, for each i, and $$Z = \bigcup_{i=1}^{\infty} Z^i \in (VG)_{\alpha}$$. COROLLARY 4. If $Z \subseteq X \times X$ is the graph of a function then $Z \in \mathcal{R}_2 \subseteq \mathcal{B}(\mathcal{R})$. *Proof.* Let G be a countable basis for the real topology and note that, for each $x \in X$, Z_x is a singleton and hence $Z_x \in G_2$. Thus by Theorem 3, $Z \in (VG)_2 \subseteq \mathscr{R}_2 \subseteq \mathscr{S}(\mathscr{R})$. Also see [7]. THEOREM 5. Let X be the real numbers and let G be a countable base for the usual topology on X. The following three statements are equivalent: - (1) CH holds - (2) if $Z \subseteq X \times X$, then $Z = A \cap B$, where $A \in (VG)_2$ and $B \in (HG)_2$ and - (3) if $E \subseteq X \times X$, then $E = C \cup D$, where $C \in \mathcal{B}(VG)$ and $D \in \mathcal{B}(HG)$. *Proof.* First, assume CH and suppose $Z \subseteq X \times X$. As is well known [7], the complement of Z is the union of two sets H and K such that each vertical section of H is countable and each horizontal section of K is countable. Let A be the complement of H and let B be the complement of K. Then each vertical section of A is a G_2 set and by Theorem 3, $A \in (VG)_2$. Similarly, $B \in (HG)_2$. Of course, $Z = A \cap B$. Since $A \in (VG)_2 \subseteq \mathscr{R}_2$ and $B \in (HG)_2 \subseteq \mathscr{R}_2$ and \mathscr{R}_2 is closed under finite intersections, $Z \in \mathscr{R}_2$. Thus, if CH holds, then the order of \mathscr{R} is ≤ 2 . Since the graph of the identity function, f(x) = x, is not in \mathscr{R}_1 , it follows that the order of \mathscr{R} is 2. Now, suppose statement 2 holds and $E \subseteq X \times X$. Then, the complement of E can be expressed as the intersection of sets A and B with $A \in (VG)_2$ and $B \in (HG)_2$. It follows that $A' \in (VG)_3 \subseteq \mathscr{B}(VG)$ and $B' \in (HG)_3 \subseteq \mathscr{B}(HG)$. Thus, E is the union of two sets C and D, where $C \in \mathscr{B}(VG)$ and $D \in \mathscr{B}(HG)$. Finally, assume statement 3 holds. Let T be a totally imperfect subset of X of cardinality c. The existence of such a set can be proven without assuming CH [3, p. 514]. Let $E = T \times T$ and let $E = C \cup D$, with $C \in \mathscr{B}(VG)$ and $D \in \mathscr{B}(HG)$. Then each vertical section of C is a subset of T which is a Borel set. Since an uncountable Borel set contains a perfect set and T contains no perfect set, we have that each vertical section of C is countable. Similarly, each horizontal section of D is countable. But, as is well known [10] this implies CH. This completes the proof of Theorem 5. The following two lemmas are well known. LEMMA 6. If F is a family of sets, α is a countable ordinal, and $A \in F_{\alpha}$, then there is a countable subfamily J of F for which $A \in J_{\alpha}$. LEMMA 7. If F is a family of sets, $\mathscr{C}(F) \subseteq F$, and $A \in \mathscr{D}(F)$ then there is a countable subfamily J of F and a countable ordinal α for which $A \in J_{\alpha}$. THEOREM 8. (a) The following two statements are equivalent: - (i) For each subset Z of $X \times X$ there is a countable ordinal α such that $Z \in \mathscr{R}_{\alpha}$. - (ii) If H is a family of subsets of X and Card H = Card X, then there is a countable family G of subsets of X and a countable ordinal α for which $H \subseteq G_{\alpha}$. - (b) If α is a countable ordinal, the following two statements are equivalent: - (i) Each subset of $X \times X$ is a member of \mathcal{R}_{α} . (ii) If H is a family of subsets of X and Card H = Card X then there is a countable family G of subsets of X for which $H \subseteq G_a$. *Proof.* The proof of part (b) is similar to that of part (a) which is given below. First suppose (i) holds, and suppose that H satisfies the hypotheses of (ii). Define the subset $Z \subseteq X \times X$ by letting each member of H be a vertical section of Z. More precisely, let f be a 1-1 function from X to H and let $$Z = \bigcup_{x \in X} \{x\} \times f(x) .$$ By (i) there is a countable ordinal α such that $Z \in \mathscr{R}_{\alpha}$ and hence by Lemma 6, there is a countable subfamily J of \mathscr{R} for which $Z \in J_{\alpha}$. Let $$G = \{B: A \times B \in J\}$$, note that $Z \in (VG)_{\alpha}$ and use Theorem 3 to conclude that $H \subseteq G_{\alpha}$. Now suppose (ii) holds, and that $Z \subseteq X \times X$. Let H be the family of vertical sections of Z, and use (ii) to secure a countable family G and a countable ordinal α for which $H \subseteq G_{\alpha}$. Thus $Z_x \in G_{\alpha}$ for each $x \in \text{domain } Z$ and by Theorem 3 $$Z \in (VG)_{\alpha} \subseteq \mathcal{R}_{\alpha}$$. THEOREM 9. The following four statements are equivalent: - (i) Each subset of $X \times X$ is a member of $\mathscr{Q}(\mathscr{Q})$. - (ii) If H is a family of subsets of X and Card H = Card X then there is a countable family G and a countable ordinal α for which $H \subseteq G_{\alpha}$. - (iii) There is a countable ordinal α such that, for each family H of subsets of X with Card $H = \operatorname{Card} X$, there is a countable family G for which $H \subseteq G_{\alpha}$. - (iv) There is a countable ordinal $\alpha \geq 2$ such that each subset of $X \times X$ is a member of \mathscr{R}_{α} . *Proof.* Statements (i) and (ii) are equivalent by Lemma 7 and Theorem 8a. Clearly (iii) implies (ii) and (iv) implies (i). Also by Theorem 8b it follows that (iii) implies (iv). α cannot be equal to 1 in (iv) because by (i) the identity function f(x) = x is not in \mathcal{R}_1 . We complete the proof by showing that (ii) implies (iii). Since this result is immediate if X is countable we will assume that $\operatorname{Card} X \ge \omega_1$. Suppose that (ii) holds and that (iii) does not. Then for each $\alpha < \omega_1$, there is a family $H(\alpha)$ of subsets of X for which Card $H(\alpha) =$ $\operatorname{Card} X$ and (1) for each countable G, $H(\alpha) \nsubseteq G_{\alpha}$. Let $H' = \bigcup_{\alpha < \omega_1} H(\alpha)$. Thus Card $H' = \operatorname{Card} X$ and hence by (ii) there is a countable family G' and a countable ordinal α' for which $H' \subseteq G'_{\alpha'}$. But then $H(\alpha') \subseteq H' \subseteq G'_{\alpha'}$ in contradiction of (1). Therefore (ii) implies (iii). In part (ii) above the family G can be chosen so that G_{ω_1} is closed to complementation (i.e., is a σ -algebra). In view of condition (ii) of Theorem 9, it is interesting to note that R. Mansfield has shown that if G is a countable family of Lebesgue measurable sets, then B(G) does not contain all analytic sets [5]. As was mentioned in the introduction it would be interesting to know whether the formula " $H \subseteq G_{\alpha}$ " in Theorem 9 could be replaced by $H \subseteq \mathscr{B}(G)$. We do not know the answer to this question. THEOREM 10. If CH holds, Card X = c, H is a family of subsets of X, and Card H = c, then there is a countable family G for which $H \subseteq G_2$. *Proof.* By Theorem 5 each subset Z of $X \times X$ is a member of \mathcal{R}_2 . The desired conclusion now follows from Theorem 8b. 4. Generating Borel sets. Let R be the set of reals, and let H be the family of all Borel subsets of R. This family has cardinality c. Suppose G is a countable family of subsets of R such that $H \subseteq G_{\omega_1}$ and G_{ω_1} is closed to complementation. The next two theorems show that, even if the family G generates all the Borel sets at an early stage, the order of G is ω_1 . This is a generalization of the well known result [4, 9] that if G is a countable basis for the real topology then G has order ω_1 . Our proof which is a usual "diagonal" type argument, parallels somewhat Lebesgue's proof of that result [3, p. 368]. Let $G = \{V_1, V_2, V_3, \dots\}$, let N be the set of irrational numbers between 0 and 1 and let K be the family $\{\theta_1, \theta_2, \theta_3, \dots\}$ of all intersections of the members of G with N, $$\theta_i = V_i \cap N$$. It will be shown that the order of K is ω_1 . It then follows that the order of G is ω_1 . For each $z \in N$, let (z_1, z_2, z_3, \cdots) be the sequence of integers appearing in the continued fraction expansion of z. This defines a reversible transformation from N onto the set of all sequences of positive integers. Let $$z^{1} = (z_{1}, z_{3}, z_{5}, \cdots) \quad \text{(odd indices)}$$ $$z^{2} = (z_{2}, z_{6}, z_{10}, \cdots)$$ $$z^{3} = (z_{4}, z_{12}, z_{20}, \cdots)$$ $$\vdots$$ $$z^{n} = (z_{2^{n-1}}, z_{3 \cdot 2^{n-1}}, z_{5 \cdot 2^{n-1}}, \cdots)$$ $$\vdots$$ This defines a homeomorphism between N and N^{\aleph_0} (see Kuratowski [3], p. 369). Also note that if f is a continuous function from N into N, then the functions f_n from N into the space of positive integers are continuous, where $$f(z) = (f_1(z), f_2(z), f_3(z), \cdots)$$, or $(f_n(z) = f(z)_n)$. Recall that $K = \{\theta_1, \theta_2, \theta_3, \dots\}$. The family K_{α} which appears in Theorem 11 is defined in §2. Theorem 11. For each countable ordinal $\alpha, \alpha > 0$, there is a function U_{α} from N onto K_{α} such that if f is a continuous function from N into N, then the set $$A_f = \{z \colon z \in U_\alpha(f(z))\}$$ is in $\mathscr{B}(K)$. *Proof.* Let $U_1(z) = \bigcup_{n=1}^{\infty} \theta_{z_n}$, for each $z \in N$. Clearly U_1 maps N onto K_1 . Let f be a continuous function from N onto N. We have $$A_f = \{z \colon z \in U_1(f(z))\}$$ $$= \left\{z \colon z \in \bigcup_{n=1}^{\infty} \theta_{f_n(z)}\right\}$$ $$= \bigcup_{n=1}^{\infty} \{z \colon z \in \theta_{f_n(z)}\}.$$ For each n, $$\{z\colon z\in\theta_{f_n(z)}\}=\bigcup_{i=1}^{\infty}\left\{J_{n_i}\cap\theta_i\right\}$$ where $J_{n_i} = \{z: f_n(z) = i\}$. Since each f_n is continuous it follows that each J_{n_i} is open and therefore the set A_f belongs to G_{ω_1} . Suppose $1 < \alpha < \omega_1$ and suppose that the function U_{γ} has been defined for each ordinal γ with $1 \le \gamma < \alpha$. (Induction hypothesis.) If α is odd, let $$U_{lpha}(z) = \bigcup_{n=1}^{\infty} U_{lpha-1}(z^n), \quad ext{for} \quad z \in N \; .$$ Clearly U_{α} maps N onto K_{α} . If α is even, let $\{\gamma_n\}_{n=1}^{\infty}$ be a sequence of odd ordinals less than α such that each odd ordinal less than α appears infinitely often in $\{\gamma_i\}_{n=1}^{\infty}$ and let $$U_{lpha}(z) = \bigcap_{n=1}^{\infty} U_{\gamma_n}(z^n)$$, for $z \in N$. If $A \in K_{\alpha}$ (α is still even), then $$A = \bigcap_{n=1}^{\infty} D_n ,$$ where $D_n \in K_{r_n}$, for each n. For each n, let y_n be a point of N such that $$D_n = U_{\tau_n}(y_n) .$$ And let z be the point mapped by the transformation described by (*) to the point (y_1, y_2, y_3, \cdots) of N^{\aleph_0} . Thus $$U_{\alpha}(z) = A$$ and U_{α} maps N onto K_{α} . This completes the definition of the functions U_{α} . Now let f be a continuous function from N into N. It will be shown that if α is even the set $$A_f = \{z \colon z \in U_a(f(z))\}\$$ is in G_{ω_1} . The argument for the case α is odd is similar. We have $$A_f = \left\{ z \colon z \in \bigcap_{n=1}^{\infty} U_{r_n}((f(z))^n) \right\}$$ $$= \bigcap_{n=1}^{\infty} \left\{ z \colon z \in U_{r_n}((f(z))^n) \right\} .$$ But, for each n, the function $z \to (f(z))^n$, being the composition of two continuous functions, is a continuous function from N to N. Thus by the induction hypothesis, the sets $\{z: z \in U_{r_n}((f(z))^n)\}$ are in the family G_{ω_i} . Therefore $A_f \in G_{\omega_i}$. THEOREM 12. If G is a countable family of subsets of real numbers with $\mathscr{C}(G) \subseteq G$, and each Borel set is a member of $\mathscr{B}(G)$ then G has order ω_1 . *Proof.* Let α be any countable ordinal, and let $$I_{\alpha} = \{z \colon z \notin U_{\alpha}(z)\}$$. Suppose $I_{\alpha} \in K_{\alpha}$, and let $U_{\alpha}(z) = I_{\alpha}$. If $z \in I_{\alpha}$ then $z \in U_{\alpha}(z)$. But this contradicts the definition of I_{α} . If $z \notin I_{\alpha}$, then $z \in U_{\alpha}(z) = I_{\alpha}$, $z \in I_{\alpha}$. This contradiction shows that $I_{\alpha} \notin K_{\alpha}$. Since $\mathscr{G}(G) = G_{\omega_1}$ (because $\mathscr{C}(G) \subseteq G$), and $I'_{\alpha} = \{z : z \in U_{\alpha}(z)\} \in G_{\omega_1}$ by Theorem 11, it follows that $I_{\alpha} \in G_{\omega_1} - G_{\alpha}$. Thus $G_{\alpha} \neq G_{\omega_1}$, and hence G has order ω_1 [3, p. 371]. ## REFERENCES - 1. J. A. Johnson, Amer. Math. Monthly, 79 (1972), 307. - 2. Kenneth Kunen, Inaccessibility Properties of Cardinals, Ph. D. Thesis, Department of Mathematics, Stanford University, August, 1968. - 3. C. Kuratowski, Topology I, Academic Press, New York, 1966. - 4. H. Lebesgue, Sur les fonctions representable analytiquement, J. de Math., (6) 1 (1905), 139-216. - D. A. Martin and R. M. Solovay, Internal Cohen extensions, Annals of Math. Logic, 2 (1970), 143-148. - 6. B. V. Rao, On discrete Borel spaces and projective sets, Bull. Amer. Math. Soc., 75 (1969), 614. - 7. ———, On discrete Borel spaces, Acta Math. Acad. Scien. Hungaricae, 22 (1971), 197. - W. Sierpinski, Sur l'existence de diverses classes d'ensembles, Fund. Math., 14 (1929), 82-91. - 9. —, Hypothèse du Continu, Warsaw, 1934, 9. Received November 14, 1972 and in revised form July 12, 1973. This work was partially supported by NSF Grant GJ-32269. University of Wisconsin University of Texas and University of Florida