PACIFIC JOURNAL OF MATHEMATICS
Vol. 51, No. 1, 1874

- SETS GENERATED BY RECTANGLES

R. H. Bing, W. W. BLEDSOE,
AND R. D. MAULDIN

For any family F of sets, let F(F) denote the smallest
o-algebra containing F. Throughout this paper X denotes a
set and 22 the family of sets of the form A X B, for A X
and B& X. It is of interest to find conditions under which
the following holds:

(1) Fach subset of X % X is a member of &F(Z7)
The interesting case is when
oy < Card Xé. C,

since results for other cases are known.
It is shown in Theorem 9 that (1} is equivalent to

There is a countable»ordinal o« such that
(2) each subset of X x X can be generated
from 42 is « Baire process steps .

It is also shown that the two-dimensional statements {1} and
(2) are equivalent to the one-dimensional statement

There is a countable ordinal a such that
for each family H of subsets of X with
(3} Card H == Card X, there is a countable
family & such that each member of H
can be generated from & in « steps .

It is shown in Theorem 5 that the continuum hypothesis
(CH) is equivalent to certain gtatements about rectangles of
the form (1) and (2) with a= 2.

Rao [7, 8] and Kunen |2} have shown that

TueoreM 1. If Card X £ o, (the first uncountable cardinal) then
(1) is true and if Card X > ¢ then (1) is false.

The gquestion of whether (1) is true (without the requirement
Card X £ w,) was raised by Johnson [1] and earlier by Erdos, Ulam,
and others (see {8], p. 197). The arguments in Kunen’s thesis actually
showed that if Card X < w, then

Each subset of X x X can be generated
from &2 in 2 steps (i.e., each subset is a
member of 22,,. See definitions in §2.).

In Theorem 5 we generalize Theorem 1 and Kunen’s result (4),
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and give a new characterization of CH by showing it to be equivalent
to certain statements about rectangles of the form (1) and (4).

If CH is assumed the « appearing in statements (2) and (3) above
is 2 (see Theorem 10). This raises the intriguing (but unanswered)
question of whether o must always be 2 if (1) holds and CH is false.

It would also be interesting to know whether statements (1), (2),
and (3) are equivalent to statement (5) below. Clearly (3) imples (5).

If H is a family of subsets of X with
{5) Card H = Card X, then there is a countable
family G for which H & < (G) .

The equivalence of (1) and (2) means for example, (assuming CH),
that there is a countable family G from which all real Borel sets (or
analytic sets, or projective sets) can be generated in fwo steps (i.e.,
Borel sets € G,,). This is remarkable in view of the well known result
[4, 8] that if ¢ is a countable basis for the real topology, then the
Borel sets cannot be generated from G in less than o, steps.

As a generalization of this well known result we show in Theorem
12 that any countable family G which is closed to complementation
and which generates the Borel sets (i.e., Borel sets © £#(()) must have
order w,. That is

F(G) & G

for any ecuntable ordinal «. Thus, even though G might generate
the Borel sets in « steps (or 2 steps if CH is assumed), the process,
nevertheless, continues to produce new members of Z7(G) until we
reach G,,.

We would like to point out in conjunction with our characteri-
zation of CH that Kunen [2] has proved that if Martin’s Axiom A
holds (see [6]) and Card X < ¢ then (4) holds. He also proved that
if @, < Card X £ ¢ then {l) is independent of ZFC (Zermo-Frankel
Axioms + the Axiom of Choice) together with the negation of CH,

2. Notation and definitions., If G is any family of sets, let G,
be the family G, and for each ordinal @, & > 0, let G, be the family of
all countable unions (intersections) of sets in |J, .. G, if « is odd (even).
Limit ordinals will be considered even. (Compare Kuratowski [31.)
Thus we have '

GO - Gy Gl = Gd: G2 = Gvﬂr GI! = Gc&a, "ty Gm '
Also G, & Gy for each ordinal @ and G, = G, .., Where o, is the

first uncountable ordinal. If @ > 0, then the family &, is closed under
countable unions (intersections) if « is odd (even).
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We define the order of G to be the first ordinal @, @ > 0, such
that G, = Ga

For each AS X (or A& X x X), let 4’ be the complement of
A with respect to X (or X x X), and for each family G of subsets
of X (or X x X) let (@) be the family of complements of ¢. Note
that if €(G) & G, or even if &(G) € G, then the family G, is the
family <#(@), the o-algebra generated by . Thus, since

(Ax By = Ax BUA x Xe &2,

it follows that &2, = 25 (). _ :
If G is a family of subsets of X, let VG = (A x Br 45 X, Bc (G},
and let HG = {A x B: AeG, B X}.
If ZZ2 X x X and ve X, let Z, denote the vertical section of Z
at o, Z, = {y: (v, y)e Z}.

3. Results. The following lemma is easily proved by transfinite
induetion.

LeMMA 2. If lsa < o, and AcG,, then there is a set B in G,
such that A & B.

THEOREM 3. If G is a countable family of subsets of X, 2 Ax X,
and O <o < w, then Ze(VE), if and only if Z.e G, for each z¢
domain Z.

Proof. By considering the natural projections of the sets involved
on the second coordinate axis, it is easily seen that

if Ze{VQ®).,, then Z,c¢ G, for each x ¢ domain Z .

Now suppose that Z.e (G, for each vedomain Z, and let G =
{0,, 0., 05, ---}. We complete the proof by transfinite induction on «.

Cage 1. ¢ = 1.

For each n, let A, = {vedomain Z: 0, & Z,}, and let Z, = A4, x @..
Then Z,e VG, for each 2, and

Z=U Z.e(VG), .

Now suppose 1 < ¢ <¢ @,, and that the theorem holds for every
70 <y <a.

Case 2. « is even.
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Let {v,};.. be a sequence of odd ordinals less than a such that
each odd ordinal less than « appears infinitely often in {v,)=.,. For
each x¢ domain Z, let

Dx(w): Dz(w)s Da(m): A

be a sequence such that D (v)e G, for each 1, and
Z, = () Do) .

This can be done in view of Lemma 2. For each 1, let

Zi= U f&} x D).
zedomaln 2
First note that Z = . Z". Also each nonempty section (£7), of Z*
is equal to D.(z)e G,,. Hence, by the induction hypothesis, Zi¢ (V&)
for each %, and therefore

Z=7€(VQ).,
by the definition of the family (VG),.
Case 3. « is odd and greater than 1.

For each a¢ domain Z, let {D(x)}z, be a sequence of members of
Gowr for which Z. = Uz, D), and let Z' = U,ecaomen i {z} x Dy(w),
for each 1.

Again it follows that Z'e G,._,, for each i, and ‘

Z=U Zic (VG),.
COROLLARY 4. If Z& X x X is the graph of a function then
Ze B & T (F). '

Froof. TLet G be a countable basis for the real topology and note
that, for each xe X, Z, is 2 singleton and hence Z.e G, Thus by
Theorem 8, Ze(VG). & 5% < &5(#). Also see [7].

THEOREM 5. Let X be the real numbers and let G be a countable
base for the usual topology on X. The Jollowing three statements are
equivalent: :

(1) CH lolds

(2) ¥ ZS Xx X, then Z=AnN B, where Ae (VG), and Be (HG),
and

(3) f ES X% X, then BE=C D, where Ce 2 (VE) and De
SF(HG).




SETS GENERATED BY RECTANGLES 31

Proof. First, assume CH and suppose Z& X x X. Asis well
known [7], the complement of Z is the union of two sets H and K
such that each vertical section of H is countable and each horizontal
section of K is countable.

Let A be the complement of H and let B be the complement of
K. Then each vertical section of A is a G, set and by Theorem 3,
Ae(V®), Similarly, Be (HG),. Of course, Z= An B.

Since Ac(VE), S 4% and Be (HG), & &% and &, is closed under
finite intersections, Ze &&. Thus, if CH holds, then the order of .&&
is < 2. Since the graph of the identity function, f(z) = =, is not in
&8, it follows that the order of &# is 2.

Now, suppose statement 2 holds and E & X x X. Then, the
complement of K can be expressed as the intersection of sets 4 and
B with Ae (VG), and Be (HGY),. It follows that 4'e (VG): & GF(VE)
and B e (HR), & &#(HG). Thus, E is the union of two sets C and
D, where Ce &Z (V@) and De F(HG).

Finally, assume statement 3 holds. Let T be a totally imperfect
subset of X of cardinality ¢. The existence of such a set can be
proven without assuming CH [3, p. 514]. Let E=TxT and let
E=CuUD, with Ce &#(VG) and De <#(HG). Then each vertical
section of C is 2 subset of T which isa Borel set. Since an uncountable
Borel set contains a perfect set and 7' contains no perfect set, we
have that each vertical section of C is countable. Similarly, each
horizontal section of D is countable. But, as is well known [10] this
implies CH.

This completes the proof of Theorem 5.

The following two lemmas are well known.

LEMMA 6. If Fis e family of sets, a is a countable ordinal, and
Ag F,, then there is a countable subfamily J of F for which AeJ,.

Lemva 7. If F is a family of sets, @ (F) & I, and Ae 7(F)
then there is a countable subfamily J of F and a countabdle ordinal
« for which AeJ..

TaEoREM 8. (a) The following two stutements are equivalent:

(i) For each subset Z of X x X there is a countable ordinal «
such that Ze 2.

(ii) If H is o family of subsets of X and Card H = Card X,
then there is a countable family G of subsets of X and a countable
ordinal a for which HZ G..

(b) If a is a countable ordinal, the following two statements are
equivalent:

(1) FEach subset of X x X s o member of Z2..
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(i) If H is a family of subsets of X and Cafd H = Card X then
there is a countable family G of subsets of X for which H< G,

Proof. The proof of part (b) is similar to that of part (a) which
is given below.

First suppose (i) holds, and suppose that H satisfies the hypotheses
of (ii). Define the subset Z < X x X by letting each member of H
be a vertical section of Z. More precisely, let S be a 1-1 function
from X to H and let

Z =$LE_{_{3;} x fix) .

By (i) there is a countable ordinal & such that Ze “, and hence by
Lemma 6, there is a countable subfamily J of <% for whick Ze o
Let

G={B:4x BelJ},

note that Ze (VG), and use Theorem 3 to conclude that H < G,.

Now suppose (i) holds, and that Z< X x X. Let H be the family
of vertical sections of Z, and use (ii) to secure a countable family G
and a countable ordinal & for which H& G,. Thus Z <G, for each
x € domain Z and by Theorem 3

Ze(V@). & . .

THEOREM 9. The following four statements are equivalent:

(i) Each subset of X x X is a member of (7).

(ii) If His a family of subsets of X and Card H = Card X then
there is a countable family G and a countable ordinal a for which
HZ G,

(iiiy There is a countable ordinal o such thot, for each Family H
of subsets of X with Card H = Card X, there is a countable family G
Jor which H < G,.

-(iv) There is a countable ordinal o = 2 such that each subset of
X x X is a member of 7.

Proof. Statements (i) and (i) are equivalent by Lemma 7 and
Theorem 8a. Clearly (iii) implies (i) and (iv) implies (i). Also by
Theorem 8b it follows:that (iii) implies (iv). « cannot be equal to 1
in (iv) because by (i) the identity function f(z) = & is not in <Z.

We complete the proof by showing that (i) implies (iii). Since
this result is immediate if X is countable we will assume that
Card X =z w,. .

Suppose that (ii} holds and that (iii) does not. 'Then for each
a < w, there is a family H{a) of subsets of X for which Card H(x) =
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Card X and
(1) for each countable G, Hla) £ G, .
Let H' = U H(e). Thus Card H® == Card X and hence by (ii) there

<y

is a countable family G’ and a countable ordinal ' for which H' & G%..
But then H{a') & H' & G, in contradiction of (1).
Therefore (ii) implies (iii).

In part (ii} above the family & can be chosen so that G, is closed
to complementation (i.e., is a o-algebra).

In view of condition (i) of Theorem 9, it is interesting to note
that R. Mansfield has shown that if G is a countable family of
 Lebesgue measurable sets, then B(G) does not contain all analytic
sets [5].

As was mentioned in the introduction it would be interesting to
know whether the formula “H £ G,” in Theorem 9 could be replaced
by H< (@), We do not know the answer to this question.

TrroreEM 10. If CH holds, Card X = ¢, H is a fomily of subsets
of X, and Card H = ¢, then there is a countable family G for which
HC G,

Proof. By Theorem 5 each subset Z of X x X is a member of
“%,. The desired conclusion now follows from Theorem 8h.

4. Generating Borel sets. Let E be the set of reals, and let
H he the family of all Borel subsets of B. This family has cardinality
¢. Suppose (¢ is a countable family of subsets of R such that H& G,
and G, is closed to complementation. The next two theorems show
that, even if the family & generates all the Borel sets at an early
stage, the order of G is w,. This is 2 generalization of the well known
result [4, 9] that if ¢ is a countable basis for the real topology then
G has order w,. Qur proof which is a usual “diagonal” type argument,
parallels somewhat Lebesgue’s proof of that result [3, p. 368].

Let G ={V, V,, V, --+}, let N be the set of irrational numbers
between 0 and 1 and let K be the family {4, 6, 6, ---} of all inter-
sections of the members of G with N,

0;’—_—- V,‘DN.

It will be shown that the order of K is @,. I{ then follows that the
order of G iz w,.

For each ze N, let (z, 2, 2, ---) be the sequence of integers
appearing in the continued fraction expansion of z. This defines a
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reversible transformation from N onto the set of all sequences of
positive integers. Let

2= (2 7 % 00 0) {odd indices)
2= (Zz, Zgy Bigy v ')

2 = (z, 2, Raay v )

( # ) Z* = (Zaﬂ-—l, Zagn—1, Bgopne1, = - ')

This defines a homeomorphism between N and N® {see Kuratowski
[3), p. 369). Alsonote that if f is a continuous function from N into N,
then the functions f, from N into the space of positive integers are
continuous, where

f@) = (f1(&), £2), £ul2), -}, or (fuld) = F(2).) .

Recall that X = {0, 4, 6, --.}. The family K, which appears in
Theorem 11 is defined in §2.

THEOREM 11. For each countable ordinal @, >0, there is o
SJunction U, from N onto K, such that if f 18 @ continuous function
from N into N, then the set

Ar = {2 ze Uf ()}
is in F(K).

Proof. Let Ufz) = Ur-16.,, for each ze N. Clearly U, maps N
onto K.

Let f be a continuous function from N onto N,
We have

= {z:z¢ U(f(z)}
= {Z.' Z@nl;{ ﬁfﬂ(z;}

vt HL{Z: ZE 8‘{“(._,)} .

For each =,

;z: zelp ) = H {J., N 8}
where J,, = {z: f.(z) = 4}. Since each f, is continuous it follows that
each J,, is open and therefore the set 4, belongs to G,
Suppose 1 < a < w, and suppose that the function U has been
defined for each ordinal v with 1< v < a. (Induction hypothesis.)
If « is odd, let
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Udz) = Lj U ("), for zeN.
Clearly U, maps N onto X,.
If « is even, let {7.}7.. be a sequence of odd ordmais less than
a such that each odd ordinal less than « appears infinitely often in
{v)e.. and let
U,,(z) = fnj U, (z%, for zeN.

If Ae K, (« is still even), then

s

A=ND,,

=l

where D, ¢ K, , for each n. For each =, let y, be a point of N such
that

Dn = Urﬂ(yw) .

And let z be the point mapped by the transformation described by
(*) to the point (v, ¥, vs, - -+) of N¥, Thus

Ufz) = A

and U, maps N onto K,.

This completes the definition of the functions U,. Now let f be
a continuous function from N into N. It will be shown that if « is
even the set

= {z: ze U(f(2)))

is in G,. The argument for the case « is odd is similar.
We have

4, = {zze () U@
= fjl{z: ze U, ((FN™) .

But, for each n, the function z-— (f(2))", being the composition
of two continuous functions, is 2 ‘continuous funetion from N to N.

Thus by the induction hypothesis, the sets {z: ze U, ({f())")} are
in the family G, . Therefore A,eG, .

THEOREM 12. If G is a countable famaily of subsets of real numbers
with (&) S G, and each Borel set is a member of £5(G) then G has
order ,.
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Proof. Let a be any countable ordinal, and let
I, = {zzg Ufz)}.

Suppose I, € K,, and let Uy ) = I,. If ze I, then ze U.2). But
this contradicts the definition of I,. If z¢ I, then z€ U =1, ze L,
This contradiction shows that I, ¢ K.

Since F () = G, (because F(G) = G), and I = {z:2g U,2)) e G,
by Theorem 11, it follows that I, e G, — Go Thus G, G,, and hence
G has order w, [3, p. 371].
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