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Introduction

The concept of an iterated function system arises in two natural contexts. One is as a
generalization of the process of looking at backward trajectories of a continuous map of a
metric space. The second is as a geometric recursion generating a fractal set. It has turned
out to be of importance for describing complexity of objects arising in systems directly
modeling physical processes.

With any finite iterated function system is associated its limit set .J, the fractal coded
by this system. The qualitative metric structure of this set, expressed mainly as the equal-
ity of the three basic dimensions (Hausdorff, box, and packing) has been clarified beginning
with the works of Moran [18] and Hutchinson [14] assuming that the generating mappings
of the underlying systems are similarities. One can infer from [14] that the Hausdorff and
packing measures coincide up to a multiplicative constant, and are positive and finite.
More subtle achievements, focused for example around the problem of multifractal decom-
position or around the meaning of several separation conditions have been then obtained
(see [28]).

In the meantime a need to explore iterated function systems with an infinite set of gener-
ators consisting of conformal maps rather than simply similarities has arisen from both of
these contexts (see [1], [5], [11], and [17] for example).

The main aim of this paper is to provide methods appropriate to deal with the case
when the number of generators is not assumed to be finite nor the generators are required
to be linear - merely conformal. After defining the limit set J, we then prove that an
analog of the Moran-Bowen formula, identifying its Hausdorff dimension as the zero of
the pressure function, continues to hold in our case in a slightly modified form. Namely,
instead of the zero of the pressure function P(t), we take the infimum of all arguments
t > 0 for which P(¢) is negative. This modification is important and in Section 5 examples
are given (cf. Ex.5.3 and 5.4) of systems such that P(t) is always either infinite or negative
(the phenomenon, first observed in [17], cannot happen in the finite case) and in this
case, the corresponding limit sets are ”dimensionless in the restricted sense”; there is no
Hausdorff gauge function of the form g(t) = t*L(t), where L is slowing varying such that
the corresponding Hausdorff measure gives J positive finite measure. The property that
P(¢) has some finite nonnegative value turns out to be a necessary and sufficient condition
for the existence of a semiconformal measure, that is a fixed point of the associated Perron-
Frobenius operator. (Indeed, the iteration of infinitely many similarity maps, ¢; with
reduction ratios r; is a special deterministic case of [17]. The results of [17] show that there
is a ¢-conformal measure m or self-similar measure m satisfying m =3 ;o rfmo qbi_l if and
only if Y°>°, rf = 1.) The semiconformal measure is then proved to be conformal which is
the notion which links dynamical and geometrical features of a conformal iterated function
system and its behaviour governs the geometric measure theoretic properties of the limit
set. If it exists, the conformal measure is proven to be unique. We should also mention
that although semiconformality is merely an auxiliary notion, it can be defined even if
no separation condition is imposed, and in a number of our proofs the semiconformality
property is sufficient.

We would like to remark at this point that the concept of conformal measure was
first introduced by S. Patterson in [21] for limit sets of Fuchsian groups and then extended
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by D. Sullivan (see [32] and [33]) to the class of all Kleinian groups (i.e. discrete groups
of isometries of a hyperbolic space of arbitrary dimension) and rational functions of the
Riemann sphere. These three classes of systems, Kleinian groups, rational functions, and
conformal iterated function systems, although similar, are mutually distinct. Let us list
just a few prominent features differentiating them. Indeed, for both Kleinian groups (not
necessarily geometrically finite) and rational functions a ¢-conformal measure always exists
(see again [32] and [33]) whereas, as explained above, for conformal iterated function
systems this property may fail. Also, for a conformal iterated function system if a ¢-
conformal measure exists, then ¢ is equal to the Hausdorff dimension of the corresponding
limit set and this measure is unique whereas for both Kleinian groups and rational functions
there are known examples (see [19], [22], [4]) allowing parameters ¢ greater than Hausdorff
dimension admitting conformal measures.

There are however wide subclasses of Kleinian groups and rational functions almost
satisfying the requirements of conformal iterated function systems, so called convex co-
compact Kleinian groups and hyperbolic rational functions. Hyperbolic rational functions
admit finite Markov partitions with exponentially contracting “inverse branches”; convex
cocompact Fuchsian groups, with an appropriate choice of generators, do the same, and all
convex cocompact Kleinian groups are by some experts believed to admit such partitions
too. A little problem appears here that the images of the elements of Markov partitions
may not be equal the whole limit set but the definition of iterated function systems could
be easily extended, for the price of some bigger technical complexity, to cover these cases.

On the other hand, the phenomenon of critical points, substantially complicating
the behaviour of rational functions does not seem to have any reasonable analog in the
class of Kleinian groups and conformal iterated function systems. However between the
class of hyperbolic rational functions and those with critical points in the Julia sets (the
common name for the limit set associated with a rational function) there is a class of
rational functions which are not hyperbolic but do not allow any critical point in the Julia
set. These maps, called parabolic maps, do not fit into formalism of conformal iterated
function systems but one can associate to any of these maps a so called jump map (see
[1], [5]), originally considered by Schweiger in [29] in the context of maps of an interval,
which like hyperbolic maps, admits a Markov partition but consisting of infinitely many
elements. This construction along with the complex continued fraction expansion system
was in fact our primary clue leading us toward infinite iterated function systems.

Coming back to iterated function systems, in order to emphasize the difference between
the finite and infinite case we would like to point out that even if a conformal measure
exists, the Hausdorff measure may vanish, the packing measure may be infinite and the
packing dimension (so also box dimension) can be larger than the Hausdorff dimension.

1. Organization of paper

In Section 2 we formalize our notation and setting and also make some preliminary
observations. In Section 3 we introduce topological pressure, Perron-Frobenius operator,
and conformal and semiconformal measures. We define and study here the class of regular
and hereditarily regular systems, and using a symbolic representation of the limit set we
prove the existence and uniqueness of the conformal measure. We also derive the existence
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of an invariant probability equivalent to the conformal measure. Proving its ergodicity we
simultaneously show its uniqueness. At the end of the section we give a proof that if the
system has finite entropy, then the Hausdorff dimension of the conformal measure is equal
to the Hausdorff dimension of the limit set.

The next section, Section 4, is partially motivated by what happens in the context
of Kleinian groups with cusps and parabolic rational functions (see [6], [34]). It is also
partially motivated from the geometric recursion point of view for similarities. Even in the
random case (see [12], [17]) there is a natural random measure on the random object. This
measure is the random “conformal” measure and for these systems the Hausdorff measure
is finite.

We prove in this section that as in the case of Kleinian groups and parabolic rational
functions (even more, rational functions with no reccurent critical points in the Julia set
(see [36])) Hausdorff measure is always finite and packing measure is positive. Moreover,
we provide sufficient conditions for Hausdorff measure to vanish or to be positive and for
packing measure to be infinite or finite. These conditions are formulated in terms of the
boundary behaviour of our system and then in examples we show that all possibly allowed
combinations are realized. A similar situation has been observed for Kleinian groups and
parabolic rational functions (see [34], [6], and [36] for example) except that in this latter
case at least one, Hausdorff or packing measure is always positive and finite. Notice also
that in view of Theorem 4.17 if Hausdorff or packing measure is positive and finite, then,
up to a multiplicative constant, it is equal to the conformal measure. Therefore the results
of this section can be also viewed as an attempt to understand the geometric nature of
conformal measures. And this process is not finished yet. Since, although we would be
able to extract a fairly large class of gauge functions for which associated Hausdorff and
packing measures either vanish or are infinite, we are not able to provide any example of a
system admitting a conformal measure whose limit set would be ”totally dimensionless”;
there is no Hausdorff gauge function such that the corresponding Hausdorff measure gives
the limit set positive finite measure.

We also prove in this section an exponential decay of the Lebesgue measures of consec-
utive “levels” of our systems and provide an effective sufficient condition for the Hausdorff
dimension of the limit set to be stricly smaller than the dimension of the Kuclidean space
containing it. At the end of the section we prove that the limit sets of irregular systems
are dimensionless.

Section 5 consists of several examples illustrating a wide variety of possible fractal
behaviour of limits sets. In particular Example 5.2 gives evidence of how large the difference
can be between limit sets of infinite systems and finite systems and as well between limit sets
of infinite iterated function systems, limit sets of geometrically finite Kleinian groups and
Julia sets of parabolic rational functions, as in the two last cases the Hausdorff dimension
and box dimension are always equal (see [7] and [31]) whereas for iterated function systems
even packing dimension can be bigger than Hausdorff dimension.

In Section 6, we deal with our primary example — an iterated function system asso-
ciated to complex continued fraction expansions. From the results obtained in Sections 3
and 4 we conclude that the Hausdorff dimension of corresponding limit set lies strictly
between 1 and 2, obtaining in this way a more qualitative proof than that given in [11].
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We improve the quantitative approach worked out in [11] by using some properties of the
pressure function. Enjoying the power of modern computers, we show that this dimension
lies between the numbers 1.2484 and 1.9.

In Section 7, we gather together several problems which remain unsolved. In the
appendix, we give a direct derivation of the ergodic probability measure equivalent to the
conformal measure. This derivation differs from the method used in Section 3 in that no
use of an abstract symbol space. Also, the measure is obtained in a constructive manner
as compared to the derivation given in Section 3 which uses Banach limits.

2. Preliminaries

Throughout the whole paper the symbols A4, Vg = Aq(B(0,1)), and A\j_; are reserved
to denote respectively the d-dimensional Lebesgue measure on R?, the volume of the unit
ball B(0,1) C R¢, and the (d — 1)-dimensional Lebesgue measure on the unit sphere
Sd-1 c RY.

Let (X, p) be a nonempty compact metric space, let I be a countable set with at least two
elements, and let S = {¢; : X — X : i € I} be a collection of injective contractions from
X to X for which there exists 0 < s < 1 such that

(2.1) p(di(), pi(y)) < sp(w,y),

for every ¢ € I and for every pair of points x,y € X. Any such collection S of contractions
is called an iterated function system, frequently abbreviated as i.f.s. Put I* = |, 5, I"
and for w € I", n > 1, set B

¢w:¢wlo¢wgo---o¢wn-

If we I*UTI*® and n > 1 does not exceed the length of w, we denote by w|, the word
wiws...wp. Observe now that given w € I°°, the compact sets ¢, (X), n > 1, are
decreasing and their diameters converge to zero. In fact, by (2.1)

(2.2) diam(¢,, (X)) < s"diam(X).
This implies that the set

= () ol (X)

is a singleton and therefore this formula defines a map 7 : I°° — X which, in view of (2.2)
is continuous. Let o : I°° — I°° denote the left shift map (cutting out the first coordinate)
on I*°, that is 0(w) = waws .... We will frequently use the following obvious relation

(2.3) Too(w)= ¢, om(w).

The main object of our interest will be the set .J = 7(1°) = J,cro0 (net Pwln(X), called
the limit set associated to the system S = {¢; : X — X :4 € I'}. Since ¢;(7(w)) = 7(iw)
for every i € I and rewriting (2.3) in the form 7 (w) = ¢, (7(c(w))), we see that

(2.4) J=Jai())

i€l
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Notice that if I is finite, then .J is compact. If the system S = {¢; : X — X : i € I},
is pointwise finite (meaning that each element of X belongs to at most finitely many
elements of ¢;(X)), then the family {¢,(X) : w € I"} is pointwise finite for every n > 1
and therefore

(2.5) J= U ¢.(X).

Thus .J is a F,45 subset of X. In Section 5 we will discuss examples of infinite i.f.s. whose
associated limit sets are not GGy subsets of X, equivalently which do not admit a complete
metric. If the system S is not assumed to be pointwise finite, then it seems that J may
even have much more complicated descriptive set theoretic structure. Let now X (co) be
the set of limit points of all sequences z; € ¢;(X), i € I', where I’ ranges over all infinite
subsets of I. As we shall see the geometric behavior of the system at this “asymptotic
boundary” directly affects the geometric properties of the limit set .J.

We shall prove the following.

Lemma 2.1. If lim;e; diam(¢;(X)) =0, then J = J U, ¢ du(X(0)).
Proof. First note that in view of (2.4) and the assumption, X (co) C J. Therefore

for every i € I we have ¢;(X(00)) C ¢;(J) C ¢i(J) C J. So, one inclusion is proved.
In order to prove the other one consider € J. Then there exists a sequence w” of
points in I°° such that x = lim,,_, m(w™). If the set of first coordinates of points w™ is
infinite, x € X (o00) and we are done. Otherwise, there exists u; € I such that the set
Ny = {n >1:w} = uy} is infinite. If now the set of second coordinates of points w™,
n € Ny, is infinite, z € ¢, (X (00)) and we are done again. Otherwise there exists ug € I
such that the set Ny = {n € N; : w} = us} is infinite. So, if we can stop this procedure
after finitely many, say n, steps, we are done, since then & € ¢y, u,.. 4, (X (00)). Otherwise,
using (2.2) we will produce a sequence u € I°° such that dist(z, ¢, (X)) tends to zero

which implies that z = 7(u) € J. [

An iterated function system S = {¢; : X — X : i € I}, is said to satisfy the Open
Set Condition (abbreviated (OSC)) if there exists a nonempty open set U C X (in the
topology of X) such that ¢;(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair
el ij.
An iterated function system S satisfying OSC, is said to be conformal (c.i.f.s.) if the
following conditions are satisfied.
(2.6) X is a compact connected subset of a euclidean space R? and U = Intpa(X).

(2.7) There exist a,l > 0 such that for every z € X C R? there exists an open cone
Con(x, ugz, o, 1) C Int(X) with vertex x, direction vector u,, central angle of Lebesgue
measure «, and altitude [.

(2.8) There exists an open connected set X C V C R? such that all maps ¢;, i € I, extend
to C'1*¢ diffeomorphisms on V and are conformal on V.
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(2.9) Bounded Distortion Property (BDP). There exists K > 1 such that |¢/ (y)| <
K|¢!,(x)| for every w € I* and every pair of points z,y € V, where |¢] (z)| means the
norm of the derivative.

Let us comment on conditions (2.7) and (2.9). First, although condition (2.7) may
seem to be fairly sophisticated, in fact it is natural and it is satisfied for example if 90X,
the boundary of X, is smooth enough or it is convex. It should be also noticed that in fact
the following weaker condition (see [12], p. 72)

xle%fX Oérrlil)\d(B(a:,r) NInt(X))/Ag(B(z,7r) > 0

would be sufficiently strong for our aims. We will suppress the direction vector u, in our
notation for cones.

Now, to have a better understanding of what (BDP) actually says let us derive some of
its geometric consequences. Indeed, it follows from (BDP) and the mean value inequality
that

(BDP.1) diam(¢., (B)) < [|4,,||diam(B) and ¢, (B(z,r)) C B(¢w(x), ||¢]Ir)

for all w € I*, all convex subsets B of V, and all balls centered at points of X with
sufficiently small radii (< dist(X,0V)). The norm is the supremum norm taken over V.
However, by changing some constants we could take the norm over X. In order to get a
similar estimate for the whole set X it therefore suffices to notice that X as a compact and
connected set can be covered by a finite chain of balls {B(z;,r;) : 1 < j < ¢} (chain in
the sense that B(xj,r;) N B(xjy1,7j41) # 0 for all j =1,2,...,¢ — 1) contained in V. In
fact, decreasing V' to be the union of this chain (this operation preserves all the constraints
imposed so far on V) we can write

(BDP.2) diam(¢,(V)) < Dl|¢, ||,

where D > 1 is any number > gdiam(V'). In a moment, for other purposes, we may need
to take D bigger than gdiam(V).

Take now z € X and 0 < r < dist(X,0V). Then B(xz,r) C V. Take also any
w € I* and let R > 0 be the maximal radius such that B(¢,(z), R) C ¢o(B(z,r)). Then
d(B(¢u(z), R)) N0(po(B(z,7))) # 0, and in view of (BDP) we have ¢! (B(¢w(z), R)) C
B(z, ||¢5|R) € B(z,K||#),||"*R). Therefore K||¢.||"*R > r. Hence we have proved
that

(BDP.3) $u(B(w,1)) D B(¢u(z), K¢, [I7)

for every z € X, 0 < r < dist(X,0V), and w € I*. Taking now n = dist(X,dV) and
assuming D > Kn~!, we can write

(BDP.4) diam(¢p, (X)) > D7|4),|| and ¢, (X) D B(pu(x), D7 |4L]])
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for all w € I* and all x € X. Note also that the above formula remains true if X is
replaced by the limit set .J, perhaps with a larger value of D. In the sequel, when we use
(BDP) we mean the original formula (2.9) and otherwise we will always indicate which one
of its geometrical consequences we are using by the label. Combining (BDP) and (2.7) we
conclude that if D > 1 is chosen large enough, then there exists 0 < § < « such that for
all z € X and for all w € I*

(210)  Gu(I(X)) > Con((), 5, D IgL 1) > Con(du(e), 6, D~diam(X))
where Con (¢, (z), 8, D~|¢,,||) and Con(d, (), 3, D~2diam(X)) denote some cones with
vertices at ¢, (), angles 3, and altitudes D™!||¢. || and D~2diam(X) respectively.

We feel also that a discussion about how to check condition (2.9) in practice would
be in order, and this is done in the next lemma and two remarks following it.

Lemma 2.2. Fach of the following three conditions is sufficient for (BDP) to hold.
(a) There are two constants L > 1 and « > 0 such that

i ()| = 1o (@)]| < LI (@5) M7 y — ],

for every i € I and every pair of points z,y € V.
(b) For everyt > 0 let

M(t)—Supsup{H DTS = i (@)]] + |y — 2] <t} < o0,

moreover the series X(t) := Y <, M(s"t) converges and lim;_,o X(t) = 0.
(¢) The family {log|¢.|:w € I*} of functions defined on V is equicontinuous.
In fact we have the following chain of implications: (a) = (b) = (¢) =(BDP).
Proof. ((a) = (b)). Indeed, for every ¢t > 0 we have M(t) < Lt® and therefore
> OM(s"t) < Lt™ Y s = Lt*(1 - s*) 71,
n>0 n>0
where s is the bound on the contraction ratios given in (2.1) , which finishes the proof of
this implication.
((b) = (¢)). Let w € I* and let n = |w|. For every z € V and every k = 1,2,...,n

define 2z = ¢, 1 © Puw, 440 O+ 0 o, (2); put also zgp = 2. Fix € > 0 and take 6 > 0 so
small that X(d) < e. Take any two points z,y € V with |y — z| < §. Then

Yn—j)| — b, (Tn—j)|
|0, (Tn—;)]

Lo (6L, ()]) — Log (1L \_Zbg<l+ 4,

< Z 1080,) ™ 1%, (n=i)] = |80, (@n=3)|
j=1

n n—1
<> M(sTe) <Y M(sM0) < e
7j=1 k=0



((c) =(BDP)). In view of the equicontinuity, there is 6 > 0 such that if |y — 2| < 4, then
|log(|¢,(y)]) — log(|¢),(z)])| <1 for all w € I'*. Since X is compact and connected, there
is a finite chain, say of cardinality n, of balls with radii 6/2 whose union, W, contains
X. Therefore if  and y are two arbitrary points in W, then there is a sequence {z; : i =
1,...,k},z1 =y, 2z = x, k < n+1 of points in W such that |z;41 — z;| < 60 for all i =
1,...,k—1. Hence [log(|¢,,(y)]) = log(|¢.,(z)])| < 3212, [log(|¢L, (2:)]) —log(|4, (2i41)])] <
k — 1. Thus |¢,,(y)|/|¢,(x)| < €™, which with V' shrunk to W finishes the proof of this
implication and the whole lemma. |

Remark 2.3. The assumption of Lemma 2.2 is obviously satisfied if the alphabet I
is finite and all the maps ¢;, i € I, belong to the class C**¢. So (BDP) holds in this case.

Remark 2.4. Because of the Koebe distortion theorem (see [23]), (BDP) is automat-
ically satisfied if X is a subset of the plane.

From now on throughout the paper we will be actually interested only in conformal
systems. We begin to explore them by proving the following.

Lemma 2.5. If S is an infinite c.i.f.s., then

E : IS
1€l

Proof. For each i € I denote by Jy, the Jacobian of the contraction ¢;. By confor-
mality |Jy,| = |¢}|%. Thus by (OSC) and (BDP) we get

Aa(Int(X)) >3~ Aa(Int(¢i(X))) = Z/I [Tg, | dAa =Y K~|¢7]|“Aa(Tnt(X)).

el nt(X) i€l

Hence Y, ., ||4}]|* < K¢ and therefore the lemma follows from (2.10). [

There are two cardinality bounds arising from our geometric condition (2.7) which play
a crucial role in our theory. To formulate them, for every x € X and every integer n > 1,
let 7, 1(z) be the maximal collection of all mutually incomparable (meaning neither word
is an extension of the other) wordsw in J;,, 17 with = € ¢,,(X) such that if w, 7 € 7 ()
and 7 is an extension of w, then 7 = w. From (2.10) we immediately get the following.

Lemma 2.6. If S is a c.i.f.s., then for every x € X and every integer n > 1, we have
#r1(x) < Ag_1(STY)/B. In particular, S is uniformly pointwise finite. More precisely
SuDpex 21 € 117 € $i(X)} < Aa_1(S971)/8 < o0,

Formula (2.10) also implies the following.

Lemma 2.7. If S is a c.i.f.s., then for every x € X and every r > 0, the cardinality
of any collection of mutually incomparable words w € T* satisfying B(x,r) N ¢, (X) # 0
and diam(¢p,, (X)) > r is bounded from above by the number VyD??3-1(1 + D72).
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Proof. Let F' be such a family. It follows from (2.10) that
b (X) D Con(gu(wn), B, D~*r) € B(x, (1+ D~*)r)

for all w € F, where ¢, (z,) is on the boundary of ¢, (X) N B(z,r). Hence the cones
Con(¢, (1,),8,D7%r), w € F, are mutually disjoint and therefore V(1 + D=2)rd =
Ai(B(z,(1+ D72)r)) > 3 cpAa(Con(pu(zy), 8, D7%r)) = #FB(D~?r)%. Now, the re-
quired estimate follows. |

Let us remark here that that infinite c.i.f.s are not necessarily uniformly locally finite.
Several examples (e.g., Example 5.1) given in Section 5 are not even locally finite. Some
of them however are and the complex continued fraction example described in Section 6 is
uniformly locally finite.

In all following sections we will extensively use the concepts of conformal and semi-
conformal measures. The definition of semiconformal measures is somewhat technical and
is postponed to the next section. The definition of conformal measures is simpler, more
important, and will be provided here. So, given ¢t > 0 a Borel probability measure m is
said to be ¢t-conformal provided m(.J) = 1 and for every Borel set A C X and every i € T

(2.11) m(gi(A)) = /A 41t dim
and
(2.12) m($i(X) A (X)) = 0,

for every pair 4,5 € I, © # j. Then an easy computation shows that for every Borel set
A C X and every w € I*

(2.13) m(pu(4)) = /A 6, [¢ dim
and
(2.14) m(du(X) N ¢- (X)) =0,

for every pair w, 7 € I'* of incomparable (neither word is an extension of the other) words.
As an immediate consequence of this definition and (BDP) we get the following: if m is
d-conformal, then

(2.15) 1< > gLl < K°.

weln

Let us conclude this section with some general facts from geometric measure theory. Given
a subset A of a compact metric space (X,d), a countable family {B(xz;,7;)};2,; of open
balls centered at points of A is said to be a packing of A if and only if for any pair i #

d(:L'i, .’Ej) >r; + Tj.
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Given a nondecreasing function g : (0,e) — (0, 00) for some € > 0, the g-dimensional outer
Hausdorff measure Hy(A) of the set A is defined as

oo
Hy(A) = sup inf{z g(diam(4;))},
e>0 i—1
where the infimum is taken over all countable covers {A; : i > 1} of A by arbitrary sets
whose diameters do not exceed . If g is of the form 2 instead of writing H,: we write
H; and speak about ¢-dimensional outer Hausdorff measure. In this case one will get
comparable numbers (in the sense that ratios are bounded away from zero and infinity) if
instead of covering A by arbitrary sets one considers only open balls centered at points of

A.

The g-dimensional outer packing measure II,(A) of the set A is defined as
y(4) = inf {3 10540}

(A; are arbitrary subsets of A), where 117, the g-packing premeasure is given by:
oo
IT;(A) = ;gg sup{z; g(2r;)}.
=

Here the supremum is taken over all packings {B(z;,r;)}72, of the set A by open balls
centered at points of A with radii which do not exceed . Similarly as in the case of
Hausdorff measures if g is of the form z? instead of writting II,+ we write II; and speak
about t-dimensional outer packing measure. These two outer measures Hy and 11, define
countable additive measures on Borel g-algebra of X. For additional properties of packing
measures and a comprehensive discussion of this and related notions the reader is referred
to the paper [35].

The definitions of the Hausdorff dimension HD(A) of A and packing dimension PD(A)
are the following

HD(A) = inf{t : H;(A) = 0} = sup{t : Hi(A) = oo}

and
PD(A) = inf{t : [I;(A) = 0} = sup{t : II;(A) = co}.

Moreover we shall deal with lower box dimension BD(A) and upper box dimension BD(A)
which are respectively defined as follows.

BD(4) = liminf 22V BD(A) = tim sup 22N AT

r—0 — 10g T r—0 - log r

where (A, r) is the minimal number of balls with radii < r needed to cover A. If the lower
and upper box dimensions coincide, then their common value BD(A) = BD(A) = BD(A) is
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called the box dimension of A. In the literature all box dimensions are also called, perhaps
more properly, box counting dimensions; we will keep here the shorter name. We recall
(see [9] for example) that HD(A) < PD(A) < BD(4) and HD(A) < BD(4) = BD(A) <
BD(A) = BD(A).

Let v be a Borel probability measure on X and let ¢ > 0 be a real number. Define
the function p = ps(v) : X x (0,00) — (0,00) by

v(B(z,r)) '

pla,r) = ——3

The following two theorems are for our aims the key facts from geometric measure theory.
The proof of the first one follows from the results obtained in [25] and the proof of the
second one is contained in [35]. Proofs may be found in [MAT].

Theorem 2.8. Assume that X is a compact subspace of a d-dimensional euclidean
space. Then for every t > 0 there exist constants hi(t) and he(t) with the following
properties: If A is a Borel subset of X and C > 0 is a constant such that
(1) for all (but countably many) x € A

limsup p(z,r) > C~1,

r—0

then for every Borel subset E C A we have Hy(FE) < hy(t)Cv(E) and, in particular,
or
(2) for all x € A
limsup p(z,r) < C71,

r—0

then for every Borel subset E C A we have Hy(E) > Cha(t)v(E).

Theorem 2.9. Assume that X is a compact subspace of an d-dimensional euclidean
space. Then there exist constants p1(t) and pa(t) with the following properties: If A is a
Borel subset of X and C' > 0 is a constant such that
(1) for all z € A

liminf p(z,r) < C™1,
r—0

then for every Borel subset E C A we have II(E) > Cpy(t)v(E),
or
(2) for all x € A
limiglfp(a:,r) >C
r—

then for every Borel subset E C A we have II(E) < pa(t)Cv(FE) and, consequently,
(1') If v is non—atomic, then (1) holds under the weaker assumption that the hypothesis of
part (1) is satisfied on the complement of a countable set.

12



3. Pressure, measures, and dimensions

In this section we introduce topological pressure, Perron-Frobenius operator, and con-
formal and semiconformal measures. We define and study here the class of regular and
hereditarily regular systems, and using a symbolic representation of the limit set we prove
the existence and uniqueness of the conformal measure. We also derive the existence of
an invariant probability equivalent to the conformal measure. Proving its ergodicity we
simultaneously show its uniqueness. At the end of the section we give a proof that if the
system has finite entropy, then the Hausdorff dimension of the conformal measure is equal
to the Hausdorff dimension of the limit set.

Let us begin this section with the following mutual equality of all box and packing
dimensions of the limit set .J and its closure .J for iterated function systems.

Theorem 3.1. If S is an i.f.s. and all maps ¢; are bi-Lipschitz, then PD(J) =
BD(J) = PD(J) = BD(J).

Proof. The inequalities PD(J) < PD(J) < BD(J) and PD(J) < BD(J) < BD(J)
are obvious. Thus to complete the proof it suffices to show that PD(.J) > BD(.J). Indeed,
fix t < BD(J) and consider an arbitrary countable cover {Y,, : n > 1} of J. Since
the metric space I is complete, there exists ¢ > 1 such that 7=1(Y;,) has nonempty
interior in I°°. Therefore there exists an w € I* such that {w} x I*® C 7~1(Y,), whence
¢u(J) = m({w} x I*®) C Y,. Since t < BD(J), we have II}(J) = oco. Since ¢, is bi-
Lipschitz, we therefore find 1T} (Y;) = IIf (¢, (Yy)) = oco. Thus ) -, I} (Y,) = oo and
consequently IT;(J) = oo which completes the proof. B [ |

In Example 5.2 we show that the inequality HD(J) < PD(J) can occur even in
conformal systems. Now let us pass to study conformal systems. Until Lemma 3.10, unless
otherwise stated, we do not assume that (OSC) and (2.7) hold. For every ¢ > 0 consider

the series
p(t) =D [l

el

Let 0 = 0g = inf{t : 1(t) < oo} > 0 and let F(S) be the set of finiteness of 1, so either
F(S) = (0,00) or F(S) = [f#,00). Some elementary properties of ¢ are collected in the
following lemma.

Lemma 3.2. The function 1 (t) is nonincreasing. It is strictly decreasing on [0, 0),
and continuous and log convex on F(S). Additionally, 1 (d) < K which implies that 0 < d.

This lemma is actually obvious. That 1 is log convex follows from an application
of Holder’s inequality, and the last assertion is included in Lemma 2.5. Note that (0)
may be infinite as well as finite — in Examples 5.3 and 5.4 we have ¢(0) < oo, on the
other hand in Examples 5.5 and 5.6 9(f) = oo and this is also the case for complex
continued fractions described in Section 6. This dichotomy plays an important role in the
classification of c.i.f.s into regular and irregular systems as explained in the last six results
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of this section. Notice also that, as Example 5.3 shows, # may be d. For every integer
n > 1 define ¢, () = 3o [|9L][F (s0 4 = ¢1). By (BDP) for all integers k,n > 1 we
have K~ (8)n(t) < tpan(t) < (), (t). Tt follows from this that 1, () < oo for all
n > 1 if and only if ¢, (t) < oo for some n > 1 if and only if ¢(¢) < co. An application of
Holder’s inequality shows that each function 1, is log convex. These facts imply that the
following limit
o 1 e

P(t) = lim —logyn(t) = lim ~log ;ﬂ 1%
always exists and is finite if and only if ¢ (¢) < oo, in particular inf{t : P(t) < oo} = 0g.
Note also that in view of (BDP) for every z € V

.1 /
P(t) = lim —log >  |¢}(x)[
welm
We call P(t) the topological pressure of the system S. For an exposition of the theory
of this notion in the context of dynamical systems acting on a compact metric space the
reader is referred to the books [26] and [39] by D. Ruelle and P. Walters respectively and
to the articles [37] and [38] for example. The following proposition collects some of basic
properties of topological pressure.

Proposition 3.3. inf{t : ¢(t) < oo} = fs. The topological pressure function P(t)
is nonincreasing on [0,00), strictly decreasing on [0,00), conver and continuous on F(S).
Additionally P(0) = oo if and only if I is infinite.

Proof. The first statement of this proposition has been proved above. The facts that
the pressure function P () is nonincreasing on [0,00) and is strictly decreasing on [, co)
are obvious. Since P is the limit of convex functions on F'(S), P is convex on F'(S). This
in turn implies that P(¢) is continuous on F(S). [

Now we shall study semiconformal and conformal measures. First without assuming
(OSC) and (2.7), we define semiconformal measures and prove some of their basic prop-
erties. Next, assuming (OSC) and (2.7), we prove the existence of conformal measures
and establish some geometric properties of conformal systems. Our way of dealing with
semiconformal measures is motivated by the approach given in [38] where a more complete
collection of references can be found.

Suppose that § € F(S) and for every bounded function f: X — R put

= [d5(@)]° f(¢i(@))-

1€l

Notice that Ls preserves the space of continuous functions C'(X) and that its norm is
bounded by 1(6), so it is continuous. Denote by L} : C(X)* — C(X)* its dual operator.
We shall prove the following.

Lemma 3.4. Ift > 0 and m is a t-conformal measure, then t € F(S) (even more,
P(t) =0) and Lf(m) = m.
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Proof. It follows immediately from (2.15) that ¢ € F(S) and P(¢) = 0. More-
over for each f € C(X) we have Lim(f) = [L(f)dm = [, |6il"(f o ¢i)dm =
> el f¢i(X) fdm = fU¢i(X) fdm = [ fdm = m(f). The proof is finished. [

This lemma gives us the first motivation to distinguish probability measures that are
fixed points of the dual operator £ and to name them J-semiconformal measures. An-
other reason is, as we have already mentioned, that d-semiconformal measures are proven
to exist even if (OSC) is not satisfied and a conformal measure may fail to exist. Moreover,
the semiconformal themselves carry interesting geometric and dynamic information. So,
our next aim is to show the existence of semiconformal measures. Frequently, if it does
not lead to a misunderstanding we will drop the subscript é and simply write £ and £*
for L5 and L} respectively. We begin with the following.

Theorem 3.5. A d-semiconformal measure exists if and only if P(0) = 0. Moreover,
if m is 6-semiconformal, then m(J) = 1.

Proof. Suppose first that a d-semiconformal measure exists. Call it m. Then for
every n > 1 we have 1 = [1dm = [L"(1)dm = [ Y7 |#,|° dm and using (BDP) we
conclude that 1 < 3, ;. [|¢),[|° < K°. Hence P(6) = 0 which finishes the first part of the
proof.

Now suppose that P(6) = 0. Consider the continuous map v — L*(v)/L*(v)(1)
defined on the space of Borel probability measures on X treated as a subspace of C(X)*.
In view of Schauder-Tichonov theorem this map has a fixed point, say m. Writing A =
L*(m)(1) we thus have £*(m) = Am. We shall now show that A = 1. Indeed, since
L(f)(x) =3 e |65, @) f(do(x)) for all n > 1, we get (£*)™(m) = A™m which implies
that [ > czn [#L,]1°dm =A™ [ 1dm = A™. On the other hand since P(6) = 0, using (BDP)
we conclude that for every € > 0, every n > 1 large enough and every x € X we have
e <3 e 0L, (2)]° < e and consequently e7 < A™ < e Thus A =1, s0 m is a
fixed point of L*.

Now, suppose m is d-semiconformal or equivalently,

(3.1) [ X Llressam= [ fam,

welm™

for every continuous function f : X — R. Since this equality extends to all bounded
measurable functions f, we get

(3.2) m(p(A) = 3 / 1 (Lo ) 0 60) dim > /A 16,19 dm

TEI™

for all w € I"™ and all Borel subsets A of X. Now for each n > 1 set X, = |, c7n ¢u(X).
Then 1x, o¢,, = 1 for all w € I"™. Thus applying (3.1) to the function f = 1x, and later to
the function f = 1 we obtain m(Xy) = [ > e [0 1°(1x, 0¢w) dm = [ > cpu |6L,]° dm =
[ 1dm = 1. Hence, m(J) = m((,>; Xn) = 1. The proof is finished. |

15



Observe that slightly more generally, if ¢ € F(S), then the same proof leads to the
existence of a probability measure m; on J such that £*(m;) = e?®m,.
For the remainder of the section we assume that P(6) = 0 and m is a d-semiconformal
measure. Frequently to stress its importance we will repeat this assumption in the for-
mulations of our results. Let us also make some additional notation. If w € I*, set
[w] = {1 € I*°: 7|, = w}. We shall prove the following.

Lemma 3.6. There exists a unique Borel probability measure p on I°° such that
p((w]) = [1¢L]° dm for all w € T*.

Proof. In view of (3.1), > ¢z [ [¢,]°dm =1 for all n > 1 and therefore one can
define a Borel probability measure p,, on C’n, the algebra generated by the cylinder sets of
the form [w], where w € I", by putting un([w]) = [ |¢,,|° dm. Hence applying (3.1) again
we get for all w € I"™

s () = Y i) = X [ 1oLl dm = [ 3760 0 671641 dm
i€l

1€l i€l

- / BL12 dm = (),

and therefore, in view of Kolmogorov’s extension theorem there exists a unique probability
measure g on I° such that p([w]) = | ([w]) for all w € I*. [

As an immediate corollary of this lemma and (BDP) we see that if R C I* is a
collection of incomparable words such that |J, ¢ ¢w(X) D J, then

(3.3) 1< S eLlP < K,

wER
Now we shall prove the following.

1

Lemma 3.7. The measures m and pom™" are equal.

Proof. Let A C J be an arbitrary closed subset of J and for every n > 1 let
A, ={wel": ¢,(X)NA#D}. In view of (3.1) applied to the characteristic function 14
we have for all n > 1

Z/|¢ (14 0 ¢) dm—Z/|¢ O(14 0 ) dm

welm™ wEA,
<3 [1o@ldn= Y () = n( U )
wEA, wEA, w€EA,

Since the family of sets {U,c4 [w] : m > 1} is decreasing and, by Lemma 3.6, the cardi-
nality of the sets A, are uniformly bounded and >, U, e, [w] = 77 (A), we therefore
o 1

get m(A) < limy, 00 /‘(UweAn [w]) = p(r~(A)). Since both measures m and pon~' are
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regular (as J is a metric separable space), this inequality extends to the family of all Borel
subsets of J. Since both measures are probabilistic we get m = po w~!. The proof is

finished. [ |

Let us recall that in the beginning of Section 2 by ¢ : I>*°® — I°° we have denoted the
left shift map (cutting out the first coordinate) on I°°. Now we shall prove it has a unique
invariant (ergodic) probability measure equivalent with p. For the sake of completeness
we provide the reader with a complete proof although after noting that for all w,7,p € I'*

we could apply Renyi’s theorem (see [24], comp. [30]).

Theorem 3.8. There erists a unique ergodic o-invariant probability measure p*

absolutely continuous with respect to p. Moreover p* is equivalent with p and K9 <
dp* /dp < K°.

Proof. Let L be a Banach limit defined on the Banach space of all bounded sequences
of real numbers. Straightforward computations and an application of Kolmogorov’s exten-
sion theorem show that the function p*([w]) = L((p(e™"([w])))n>0) defined on I'*, extends
to a o-invariant probability measure on I°°. Keep for it the same symbol p*. Notice that,
using (3.3), for each w € I* and each n > 0 we have

uo (@) = 3 wlro) = 3 [ 16l dm = S0 K [ 160 dm

TEI™ TEI™ TEI™

= K_5/|¢L|5dm D N 2 K0 u(whu(I™) = K~ u([w])

TEI™

and

wo (W) = Y u(re)) = Y / 16,,1% dm

Teln Teln

< NI [ 16l dm = [ 1L dm S
Teln Teln

< K’ p([w)).

Therefore, K %u([w]) < p*(w]) < K°u([w]) and these inequalities extend to all Borel
subsets of I*. Thus, to complete the proof of our theorem we only need to show the
ergodicity of p* or equivalently of p. Toward this end take a Borel set A € I with
pu(A) > 0. Since the nested family of sets {[7]: 7 € I*} generates the Borel o- algebra on
I°°, for every n > 0 and every w € I"™ we can find a subfamily Z of I'* consisting of mutually
incomparable words and such that A C (J{[7]: 7 € Z} and }___, p([wT]) < 2u(wA), where

17



wA ={wp:pe A}. Then

p(o () Nfel) = ) > 5 3 pllor) =5 3 [ fol [ dm

> LK1 Z/|¢ Pdm = 5K [ 1l dm 3 (i)
(3.4 > K (DAl 7€ 21) > S K m(Ayn(lu).
Therefore (o= (I \ 4) 1 [u]) = p(lw] \ o="(4) N [w]) = p(lw]) — u(o~"(4) N [u]) <

(1 — (2K°)7'u(A))p([w]). Hence for every Borel set A C I°® with pu(A) < 1, for every
n > 0, and for every w € I"™ we get

(3.5) plo™™(A) N w]) < (1 - 2K°) 71 — u(A))) p((w]).

In order to conclude the proof of ergodicity of o suppose that c7}(4A) = A and 0 <
w(A) < 1. Put v = 1 — (2K%)71(1 — p(A)). Note that 0 < v < 1. In view of (3.5),
for every w € I* we get p(AN [w]) = p(oc™*l(4) N[w]) < yu(w]). Take now n > 1 so
small that yn < 1 and choose a subfamily R of I* consisting of mutually incomparable
words and such that A C [J{{w] : w € R} and p({[w] : w € R}) < nu(A). Then

p(A) <Y ermANnw]) <X cpyu([w]) = yu(U{w] : w € R}) <vnu(A) < p(A). This
contradiction finishes the proof. |

Theorem 3.9. There exists exactly one d-semiconformal measure.

Proof. Since m is d-semiconformal we are only left to prove its uniqueness. So,
let m; be another J-semiconformal measure and let p; be the probability measure pro-
duced in Lemma 3.6 applied to the measure m;. Then for every w € I* we have K% <
w1 ([w])/ ,u([w]) < K°, whence y; and are equivalent and the Radon- Nikodym derivative p
satisfies K9 < p < K?. We also have w(| = |¢0(w)|5 dm and p([w)]) = [ |¢),]° dm =

S 10, (b w) (@) 1), ) (2)|° dm(z) and hence inf{|¢[,, ()] : = € %(w)( u(lo()]) <
p([w]) < supf{|¢l,, (2)]° : & € o) (X)}u([o(w)]). Since ¢, is a continuous function on X,
we thus obtain that for every w € I

im M = ¢ (7(c(w)))]°
(3.6) J Sy = 6l (o)

and the same formula is true with y replaced by p1. In view of Theorem 3.8, there exists a
set of points w € I°° with p measure 1 for which the Radon-Nikodym derivatives p(w) and
p(o(w)) both are defined. Let w € I* be such a point. Then using (3.6) and its version
for p1, we obtain

o) = lim (ul([a)ln])>: hm( i ([w]n]) _m([a<w>|n_1])_u<[a<w>|n_1]))
oo\ p(wh]) ) o \m(o@h-a])  p(o@h-a])  awl)
= 190, (1o (@) p(o (@)IdL,, (o ()|~ = plo(w))
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But since, in view of Theorem 3.8, ¢ is ergodic with respect to p, we conclude that p is
p-almost everywhere constant. Since p; and p are both probabilistic, 1 = p. So, applying
Lemma 3.7 finishes the proof. [ |

Now, coming back to (OSC) and (2.7) we shall prove the existence (and uniqueness)
of conformal measures. In fact we shall show that every measure fulfilling slightly weaker
requirements than a semiconformal measure is conformal.

Lemma 3.10. A Borel probability measure v on X is d-conformal if and only if
P(6) =0 and v(¢,(A)) > [, |6L|° dv for all w € I* and for all Borel subsets A of X.

Proof. That conformal measures satisfy the requirements appearing in this lemma
follows from their definition and Lemma 3.4. In order to prove the harder part first we
shall show that condition (2.12) is satisfied, then that v(J) = 1, and finally that (2.11)
holds. So, in order to prove (2.12) suppose to the contrary that v(¢,(X) N ¢-(X)) > 0
for some ¢ > 1 and two distinct words p,7 € I%. Let £ = ¢,(X) N ¢-(X) and for every
n>1let B, = J,cpm dw(£). Since each element of E,, admits at least two different codes
of length n + ¢ which agree on the initial segment of length n, it follows from Lemma 2.6
that Nye; Ur—p En = 0. On the other hand by (3.3), (BDP), and Lemma 2.6 we get
v(E,) > BAN (STHKu(E), thus v(Ney Unek En) > BA(STHKy(E) > 0.
This contradiction shows that

(3.7) v(¢p(X) N (X)) =0

for all incomparable words p, 7 € I*. In order to show that v(J) = 1 suppose to the con-
trary that »(X \ J) > 0. In view of (3.7) for all w € I* we have v(¢,(X \ J)NJ) =
V(Uq—eI\WI ¢w(X \ J) N QST(J)) S Zq—eI\wI V(¢w(X \ J) N QST(J)) = 0. Hence Setting
En = Uperm ¢u(X \ J) we get V(J N Un>1En) = 0. On the other hand v(FE,) >
K=9u(X \ J) (because of (3.7) we can skip the factor BALL (S%1) here) and therefore
v(Meet Uney, En) > K~°v(X \ J) > 0. Moreover

NUEcNU U a)=N U dx) =
k=1n=k k=1 n=kwel™ k=1werIk

Combining the formulae occuring at the ends of the last three sentences we fall into a
contradiction which proves that v(J) = 1.

Now we need and we are in position to prove that the d-semiconformal measure m is
d-conformal. Indeed, m satisfies all conditions placed in the right-hand side of Lemma 3.10.
Moreover, using (3.7), (3.2), and Lemma 3.6, given an integer n > 1, we can write 1 =
m(X) = m(UweIn qﬁw(X)) = Zwem m(py (X)) > ZweInf|qS(’u|5dm = 1. Therefore
m(¢w (X)) = [|¢),]° dm for all w € I". Define now two finite measures m; and ms on X
in the following way: mi(A) = [, |¢},|° dm and ma(A) = m(¢.,(A4)). Since we know that
m1(X) = mao(X) and my(A) < mo(A) for all Borel sets A, we conclude that m; = my.
Hence, conformality of m is proven.
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Let us now return to the measure v. We shall show that m is absolutely continuous
with respect v. Indeed, it follows from conformality of m and (BDP) that K ~°||¢/||° <
m (¢, (X)) < ||¢L]|° for all w € I*. Since, by the assumptions, v(¢, (X)) > K=0||¢.1|°,
we therefore obtain m(¢, (X)) < K°v(¢,(X)). So, using (3.7), we conclude that m is
absolutely continuous with respect to v and p = dm/dv < K° v-a.e. Repeating essentially
the argument from the proof of Theorem 3.9 to show that p is almost everywhere constant,
we proceed as follows. In view of Lemma 3.7 and Theorem 3.8 there exists a set of points
w € I*° with g measure 1 for which the Radon-Nikodym derivatives pon(w) and pom(o(w))
both are defined. Let w € I be such a point. Then

m<¢w|n<X>>>
V(B (X))

(0, (X)) Moy (X)) u(qsawn_l(X)))
1o (X)) Vot (X)) (), (X))

/|0 BT
(f%(w)"l(X) o -p(m(o(w))) - lim f%(“)Infl(X)'%' dm

por(w)= lim <

Mo (w)]n—1 (X)) n—00 Mo (w)]n—1 (X))
= |¢l, (r(o(w)) |’ p(m(o(w)))|¢L, (7 (0 (w))|° = p(n(o(w)))

So, by the Birkhoff ergodic theorem, p o m(w) is m-a.e. constant and so is the Radon-
Nikodym derivative p : J — [0,00). Keep the same symbol p for this value. Since both
measures m and v are probabilistic, p > 1. In the proof of the previous theorem we
were done at this point concluding that p = 1 since p; and ps were equivalent. Here an
additional argument is needed. And indeed, if p > 1 m-almost everywhere, define the set
Z={xe€J:p(x) =0} Thenv(Z)=1—-1/p > 0. We claim that

(3-8) v((J\Z2)N¢u(Z)) =0

for all w € I*. Indeed, if v((J\ Z) N ¢,(Z)) > 0 for some w € I*, then m(d,(Z)) >
m((J\ Z2)Nou(Z2)) = v((J\ Z)N¢,(Z))/p > 0 which by conformality of m implies
that m(Z) > 0. This contradiction finishes the proof of (3.8). But now it follows from
(3.8) that the probability measure v|z/v(Z) satisfies the assumptions of the right-hand
side of Lemma 3.10, hence from what has been proved we conclude that m is absolutely
continuous with respect to v|z/v(Z). This however contradicts the definition of the set Z
and finishes the proof. [

We would like to repeat here the following consequence of Lemma 2.6 which has been
used in the proof of Lemma 3.10:

If p and 7 are two distinct words of the same length, F = ¢,(X) N ¢.(X), and
E, = Uweln ¢o(F), then limsup,,_,  E, = 0.

As an immediate consequence of Lemma 3.10, Theorem 3.5, and (3.2) we get the
following.
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Corollary 3.11. Let m be a d-semiconformal measure. Then m is d-conformal. Also
m-almost every point x € J has a unique representation in the form x = m(w), w € I*°,
i.e., the set m=1(x) is a singleton.

Remark 3.12. Notice that the measure p* pulls down canonically to the limit set J
giving rise to the measure m* = p* o 7! which is equivalent to m. Notice also that since
m-almost every point = € J has a unique representation in the form z = 7(w), w € I°°, the
formula T'(z) = ¢, ! (x) defines p*-a.e. a measurable map on J. Observe that T commutes
with the shift map o on I°° via the invertible map 7 establishing a measurable isomorphism
between the systems (o, u*) on I°° and (T,m*) on J. Frequently, in the sequel we will
simply identify these two systems, especially writing ¢ also for 7. Let us also remark that

in the appendix, we give a direct method of obtaining the measure m*.
Let us now derive some geometric consequences of these results.

Lemma 3.13. A t-conformal measure exists if and only if P(t) = 0.

Proof. The proof comes up as an immediate consequence of Lemma 3.4, Theorem 3.5
and Corollary 3.11. |

For a c.i.f.s. S denote by h or by hg, the Hausdorff dimension HD(.J) of the corre-
sponding limit set J. We call a c.i.f.s. S regular if it admits a ¢-conformal measure, or,
in view of Corollary 3.11 and Lemma 3.13, equivalently if the equation P(¢#) = 0 has a
solution.

The following lemma has been proved in [2]. For the sake of completeness we prove it
below giving a slightly different proof which fits better into our general approach.

Lemma 3.14. If I is finite, then the system {S = ¢; : i € I} is reqular and there
exists C' > 1 such that
m(B(z,r))

<C
o

cl<

forallz € J and 0 < 2r < diam(X ), where P(0) = 0. In particular, 0 < Hs(J),Is(J) < oo
and 6 = h.

Proof. Our system is regular since 0 < P(¢) = log #([) < oco. Since I is finite, the
number § = inf{||¢}|| : ¢ € I} is positive. Consider z = 7(w), w € I*°, 0 < 2r < diam(X),
and let n > 0 be the smallest integer such that ¢, (X) C B(z,r). Then by (3.2) and
(BDP), m(B(z,r)) > K_5||¢5(’u|n||5. From the minimality of n we conclude that ¢, _, (X)
is not contained in B(z,r). Thus, by (BDP) and (BDP.4), we get r < diam(¢,,|, , (X)) <
D¢, I < DKIlg,, 17114, 1| < DEETg,, [ Therefore

m(B(x,r)) > (DK%~ ~"r,

21



Thus by Theorem 2.8(1), Hs(.JJ) < oo and by Theorem 2.9(2), I15(.J) < co. Now let Z be the
family of all minimal (in the sense of length) words w € I'* such that ¢, (X) N B(z,r) # ()
and ¢, (X) C B(w,2r). Then diam(¢,,,_, (X)) > r. Let R = {w|,-1 : w € Z}.
Note that R is finite and therefore we can find a finite subfamily R* of R consisting of
mutually incomparable words such that each element of R is an extension of an element
from R*. Temporarily fix an element 7 € R* and take ¢ € I such that 72 € Z. Then 4r >
diam(¢r;(X)) > DM@l > DTIEH(||61)(||¢7]) > D~2K~*¢diam(¢,(X)). Hence
diam(¢, (X)) < 4KD?*¢~'r and therefore |J, ¢ 5. ¢-(X) C B(z, (1+4KD?¢~")r). On the
other hand, as r < diam(¢, (X)) < D||¢ ||, it follows from (BDP.4) that A(¢, (Int(X)))) >
ViDL || > VyD =244, Therefore Vy(1+4K D¢ 1)%r% = \(B(z, (1+4KD*¢ )r)) >
#R*VyD~2dr? wwhich implies that #R* < D?¢(1 + 4K D?¢71)% By the definition of R*,
we have 71 (B(z,r)) C U{[r] : 7 € R*}. Therefore, since ||¢}|| < 4DKE¢™1r, using
Lemma 3.7, we get

m(B(w,r)) =por " (Ble,r) < > u(lr]) < Y 1411 < Y 4DKE )

TER* TER* TER*
< #R*(4¢7'DK)%r°.

So, applying Theorem 2.8(2) and Theorem 2.9(1) the proof is finished. [

Let £ =inf{t > 0: P(¢) < 0} and let Fin(I) denote the family of all finite subsets of
I. We shall prove a characterization of HD(.J) which is well-known for finite systems and
which goes along the line continued in [2], [3], [4], [15], [18], [17], and others.

Theorem 3.15. It holds HD(J) = £ = sup{hp : F € Fin(I)} > 0. If P(t) =0, then
t is the only zero of the function P(t) and t = HD(J).

Proof. Take t > £. Then, using (2.10), for every integer n > 1 sufficiently large
we have > ;. diam(¢,(X))* < D*Y. . [|6L|[F < Dfexp(nP(t)/2). Since the family
¢ (X), w € I, is a cover of J and since its diameters converge to 0 as n — oo, it follows
from the estimate obtained that Hy(J) = 0. Thus HD(J) < &. Set now n = sup{hp : F €
Fin(I)} and consider an arbitrary ¢ > n. Then by Lemma 3.14 and (3.3) for every n > 1,
we have

Sl = s S LI < supd X (LIt
WEI"’ TEfin(I)weTn T uJET"
< st sup (37 |@L I[P} < s sup KT < s R,
T
wEeT™

Hence P(t) < (t — n)logs < 0 which gives ¢t > ¢ and consequently n > £. Obviously
n < HD(J), and since we have proved that HD(J) < ¢, the proof of the “equality” part
of the theorem is completed. The inequality 6 < ¢ follows immediately from definitions of
both numbers. Finally, the last statement of the theorem is true since P(t) is continuous
and strictly decreasing on (6, 00). |
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The following theorem establishes also a continuity property of a conformal system
with respect to its finite subsystems.

Theorem 3.16. If S = {¢; : i € I} is a regular system, then limpc iy mp = my
in the weak* topology on C(X).

Proof. Let v be an arbitrary accumulation point (in the weak* topology on C'(X)) of
the sequence {mp : F' € Fin(I)}. We are to show that v is h = hy conformal and in order
to achieve this we will prove that the assumptions of Lemma 3.10 are satisfied. Indeed,

P(h) = 0 since S is regular. Therefore we can use (3.3), for example to conclude that for
alln >1

39 1 / h: !/ 1h
(3.9) FE;;%(I)%; L1 =D 1¢l]

and the convergence is uniform with respect to F' € Fin(I). As, by Theorem 3.15, h =
sup{hp : F € Fin(I)}, applying (3.1) we get that for every continuous function f: X :—
R, every F' € Fin(I), and every n > 1

[ tame= [ S jLlrfo s dme > [ S 6L o b dmr

weF™ weF™

Thus, using (3.9), continuity of > ;. [¢,|", and the definition of v we obtain [ fdv >
> werm |¢L1"(fody) dv. Now exactly as in the derivation of formula (3.2), we notice that
this inequality extends to all bounded measurable functions f : X — R. In particular it is
true with f = 1,_(a), where w € I*, and A is any Borel subset of X. This gives v(¢,(4)) >

[41¢L,1° dv which finishes checking the assumptions of Lemma 3.10 and completes the
proof. |

The following immediate consequence of Theorem 3.15 has been proved, even in the
random case, in [17].

Corollary 3.17. If S is a linear c.i.f.s., then HD(J) is the infimum of all t > 0 such
that 3-crll¢5]l" < 1.

Combining Lemma 3.13, Proposition 3.3, Theorem 3.9, and Theorem 3.15 we can
collect the essence of our results so far proven in this section in the following way.

Theorem 3.18.
(a) If a t-semiconformal measure exists, then t = h.
(b) Each t-semiconformal measure is t-conformal.
(¢) There ezists at most one h-conformal (equivalently h-semiconformal) measure.
(d) The system S is regular if and only if P(h) = 0.
(e) The system S is reqular if and only if P(t) = 0 for some positive t.
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Motivated by this theorem, from now on we will rather use the letter h instead of
0 even when referring to theorems including § in their formulations explicitly. We call
a subsystem S’ = {¢; : i € I'} of the system S = {¢; : i € I} cofinite if I’ C I and
the difference I\ I’ is finite. Dealing with cofinite subsystems we will need the following
obvious lemma.

Lemma 3.19. The following conditions are equivalent.
(a) Ys(t) < oo.
(b) There exists a cofinite subsystem S" of S such that g/ (t) < oo.
(¢) For every cofinite subsystem S’ of S we have g/ (t) < 0o.
(d) Ps(t) < oo.
(e) There exists a cofinite subsystem S" of S such that Pg/(t) < co.
(f) For every cofinite subsystem S’ of S we have Pgi/(t) < oo.
In particular, s = Os: for every cofinite subsystem S’ of S.

We call a c.i.f.s. S hereditarily regular if its every cofinite subsystem is regular.

Theorem 3.20. An infinite system S is hereditarily reqular if and only if P(f) =
0 & Pl) =00 & {t: Pt) < oo} = (,00) & {t : () < oo} = (0,00). If S is
hereditarily regular, then h > 6.

Proof. If {t : P(t) < oo} = (6,00), then S is hereditarily regular in view of
Lemma 3.19, Theorem 3.18, and Proposition 3.3. If ¢)(0) < oo, then there exists a cofinite
subsystem S’ of S such that g/ (0) < 1, whence Pg:(f) < 0. Therefore S’ is not regular
in view of Theorem 3.18, Theorem 3.15 and Proposition 3.3. All other equivalences in-
volved in this theorem follow now from Lemma 3.19. Inequality A > 6 follows now from
Proposition 3.3 and Theorem 3.15. |

If S is not regular we call it irregular. From Theorem 3.18, Theorem 3.15 and
Proposition 3.3 we get the following.

Theorem 3.21. S is irreqular if and only if P(h) < 0 < P(0) < 0.

Theorem 3.22. If S is irreqular, then every cofinite subsystem S’ of S is irreqular
and hS/ = 95.

Proof. In view of Theorem 3.21 hg = fg. In view of Lemma 3.19 and Theorem 3.21
Ps/(fs) = Psi(0s) < Pg(fs) < 0 and therefore it follows from Theorem 3.21 that S’ is
irregular. Thus, using Lemma 3.19, hg: = 0g: = 0g. |

Theorem 3.23. limTe}-m(I) h/I\T = infTE}-in(I) h/I\T = 95.

Proof. That limpcri,(ry hpnr > 0s follows from Theorem 3.15 and Lemma 3.19.
In order to prove the opposite inequality fix ¢ > fg. Then ¥g(t) < oo, and therefore
there exists /' € Fin(I) such that ¢pr(t) < 1 for every finite subset T' of I containing
F. Hence Pnr(t) < 0 for every finite subset 7' of I containing F' which shows that
limye Fin(ry hnnr < t. The proof is finished. |
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If the system S is finite, then in view of Lemma 3.14, m is equivalent to the h-
dimensional Hausdorff measure on J. Since, as Example 5.5 shows (comp. also Example 5.7
and Theorem 6.4), this generally is no longer true for infinite systems, the natural question
arises of whether at least the Hausdorff dimension of m is equal to h. In order to give a
sufficient condition, we find it appropriate, although not necessary, to use the notion of
metric entropy to be found in [20] or [39] for example. We remark that since in our case the
partition {[¢] : ¢ € I} generates the Borel o-algebra on I°°, the metric entropy h, (o) of the
system (o, %) is equal to infi{ 52 > p*([w]) log(p*([w]))} and note that this number
is finite if and only if >, ; —hlog(||¢}]])]|}]|" is finite. We shall prove the following.

Theorem 3.24. If the metric dynamical system (o, u*) has finite entropy, equivalently
if the series >, —hlog(||d}]|)||#5||" converges, then HD(m) = h.

Proof. Let m(E) = 1. Since the series Y, ., —hlog(]|#;|])]|¢;||" converges, invoking
(3.3), we conclude that the function f: I = R, f(w) = hlog|¢,, 7((ow))], is integrable
with respect to the measure p, as well as, in view of Theorem 3.8, with respect to the
invariant measure p*. Let F = [ fdu*, —oo < F < 0. Fix 0 < v < 1. We will show
HD(E) > «h. Take ¢ > 1 so large and n > 0 so small that Il::—i“:’? . ﬁ > 7. Let now
Jt={x € J:#r Yx) = 1}. By Remark 3.12, m(J') = 1. For every z € J! and every
n > 1, set x|, = ¢y, (r), where 7(w) = x. In view of Birkhoff’s ergodic theorem and
Egorov’s theorem there exists Jo C J! N E such that m(Jy) > 0, and exp(n(F —n/2)) <
|97, (0" (@))[" < exp(n(F +n/2)) for all n > 1 sufficiently large and all z € J;. Hence
there exists ng > 1 such that

(3.10) e"EF=M < m(x],) < enEETM),
and
(3.11) diam(z|,)" > "=

for all x € Jp and all n > ny. Given now 0 < r < exp(no(F —n)/h) and = € Jy, let
n(x,r) > 0 be the minimal number n such that diam(z|,4+1) < r. Using (3.10), we deduce
that n(x,r) +1 > ng, hence n(z,r) > ng and diam(z|,(g,)) > 7. In view of Lemma 2.7,
for every z € Jy and every 0 < r < exp(no(F — n)/h), there are k < V;D?*3~1(1 + D~2)
points x1,...,x, € Jy such that Jo N B(z,7) C U§:1 Tjln(e;r). Let m = m|z, be the
measure m restricted to the set Jy. Using (3.10) and (3.11) we get,

k k
(B(2,1) <Y m(5]n(a,m) < Y e @ m I+
j=1

=1

3 Fn _n(zjr) = hy
- jz::lexp ((n(:vjvr) + D(F =m) 5= 0 1) < jz::l(dmm(xﬂn(mw)))

< krh7.
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Therefore, HD(E) > «vh and thus, HD(m) > HD(m) > «vh which finishes the proof. [

Corollary 3.25. If S is hereditarily reqular, then HD(m) = h.

Proof. Since S is hereditarily regular there exists n > 0 such that ¢(h —n) < oo
which means that Y, [|#]|"~" < co. Since ||¢;||~" > —hlog||¢}|| for all but perhaps
finitely many i € I, the series Y, ., —hlog(]|#;]])||¢;||" converges. Thus Theorem 3.24
applies and the proof is finished. [ |

We should note however that there are regular systems where the entropy of (o, u*)
is infinite and HD(m) = h.

Let us finish this section with some comments which seem to be relevant in this place.
Namely, for finite it c.i.f.s. BD(J) = HD(J). This is

no longer the case for infinite c.i.f.s. Roughly speaking the reason is that X (co) is in
some sense highly independent of J. In particular, in Section 5 we give examples, even of

regular locally finite linear systems, such that HD(J) < BD(J) = HD(J) = HD(X (c0)).

4. Geometric measures

In this section our main objective is to study Lebesgue, Hausdorff, and packing mea-
sures of regular and hereditarily regular systems. In particular, we prove in this context
some refinements of Theorems 2.8 and 2.9 relating the pointwise scaling behavior of confor-
mal measure m at the boundary, X (00), to the values of Hausdorff and packing measures
on the limit set J. Moreover, at the end of the section we prove a theorem which con-
cerns irregular systems and establishes the “dimensionlessness” of their limit sets in the
restricted sense. We begin with the following finer characterizations of the Hausdorff di-
mension of the limit sets which are more useful in estimating dimensions of various systems.
Note that in condition (b) the distortion constant K is involved whereas in condition (c)
it is not (cf., Section 6). Note also that ¢ (t) treated as a function of n with fixed ¢ is
supermultiplicative whereas 1, (t) was submultiplicative.

Theorem 4.1. If S is a regqular c.i.f.s., then for a real number t > 0 the following
three conditions are equivalent.

(a) t = h is the Hausdorff dimension of .J.
(b) t is the only number such that

1 <4 (t) < K*

for all n > 1, where d is the dimension of the euclidean space containing X .
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(¢) t is the only number such that

P, (1) <1< 4n(t)

—n

for alln > 1, where 1 (t)) = 3 inf ¢, |" and inf |¢),| = inf{|$],(z)| : 2 € X}

Proof. That the Hausdorff dimension h satisfies the inequalities appearing in (b) an
(c) follows immediately from (3.3), Theorem 3.18, and since 1y, (t) < K'¢ (t) < ¢n(t )
Conversely, if ¢ satisfies either (b) or (c) for each n > 1, then

1 1
P(t) = lim —logy,(t) = lim —logy (t) =0
n—oo N —n

n—oo n

and therefore t = h in view of Theorem 3.15. [ |

Lemma 4.2. If m is a t-conformal measure on J, then H; is absolutely continuous
with respect to m and dHy/dm < (DK)t. In particular, Hy(J) is finite.

Proof. In view of (BDP),(BDP.1), and conformahty of m we have diam(¢, (J)) <
D||¢,,|| and m(¢,(J)) > K~"|@|[*. Hence diam(¢,,(J))" < (DK)'m(¢y(J)). Let now A
be a closed subset of J and for every n > 1 put A,, = {w € I" : ¢, (J) N A # 0}. Then the
sequence of sets J,,c 4 ¢w(J) is decreasing and (1,5, (UwEAn ¢w(J)) = A. Therefore

H,(A) < liminf Z (diam (¢, (/)" < liminf(DK)* Y~ m(¢u(J))

n— 00 n— 00

_ t
= (DK)* hnl’gloléfm g ¢ (J)) = (DK)'m(A).

Since J is a separable metric space, the measure m is regular and therefore the inequality
Hi(A) < (DK)'m(A) extends to all Borel subsets of J. The proof is finished. [

Let us now prove an analogous result for packing measures.

Lemma 4.3. If m is a t-conformal measure for a c.i.f.s. S = {¢; : i € I} and
either I is finite or J N Int(X) # (), then m is absolutely continuous with respect to 11;.
Moreover the Radon-Nikodym derivative dm/dIl; is uniformly bounded away from infinity.
In particular, I, (J) > 0.

Proof. If I is finite, then the result follows from Lemma 3.14. So, suppose that
J NInt(X) # 0. Then there exists ¢ > 1 and 7 € I? such that ¢.(X) C Int(X). Set
v = dist(¢-(X),0X). Let

R = {w € I*® : W|j41,n4q = 7T for infinitely many n’s}

and let Rg be the set of those elements of I°° which contain no subword 7. Since [7|N Ry =
0, we get u(Ro) < 1, and since 0 =1 (I°°\ Ry) C I\ Ry, it follows from ergodicity of o proven
in Theorem 3.8 that p(Rp) = 0. As I*® \ R = {J,,~o 0 " (Ro), we obtain p(I*° \ R) = 0.
Therefore, using Lemma 3.7, we get m(J \ n(R)) = pon (J \ n(R)) < u(I*®\ R) = 0.
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Take now w € R and an integer n > 1 such that w|j41pntq = 7. Put o =
7(w) and consider the ball B(:U,K_IHQS:U'”H’Y). Since by (BDP.3) B($,K_1||¢;|n||’y) C

b, (B(r(0™(w)),7)) and since B(m (6™ (w)),v) C Int(X) C X, using (BDP.1) and confor-
mality of m we get

m(B(z, K|, 7)) <116, 1I'm(B(r(e™ (@), 1) < llg}, II
= (Ky™ D) (E I, 1)

Since m(J \ 7(R)) = 0, applying Theorem 2.9(1) we thus get [I;(E) > (Ky~1)tb(d)m(F)
for every Borel subset E of J. The proof is finished. |

The assumption J N Int(X) # () is actually known in the literature as the Strong
Open Set Condition (SOSC). Actually, the (SOSC) requires the existence of a set X
satisfying (2.6) - (2.7) and the condition J N Int(X) # (. In order to clarify the situation
note that X is not uniquely determined by the contractions ¢; and the limit set J. So the
question is: Given a c.i.f.s., can one adjust X so that (SOSC) holds? This is exactly what
Schief accomplishes in the case of a finite system of similarities (see [28]).

Xn=J du(X

welm™

Now for each n > 0 put

We shall now prove two results concerning the d-dimensional Lebesgue measure A of these

sets, the Lebesgue measure of the limit set J, and an estimate on the Hausdorff dimension
of .J.

Proposition 4.4. If S is a c.if.s. and Ag(Int(X) \ X1) > 0, then there exists
0 < v <1 such that A\g(X,,) <" Ag(X) for alln > 1. In particular, A\g(J) = 0.

Proof. Put G = Int(X) \ X; and € = K~9\4(G)/Aa(X) < 1. In view of (BDP) we
have Aj(dw (G)) > EXi(do(X)). In view of (OSC) we have ¢, (G) N ¢ (X) =0 if w # 7
and |w| = |7|. Thus for all n >0

n+1 U ¢w Xl U st X\G U ¢w )\ U QSW(G):XTL\ U QSW(G)

welm welm welm welm weln
Therefore
A (Xn-l—l) < )‘d U ¢w - Xn) - Z )‘d(¢w(G
weln weln
— &) Maldu(X)) < Aa(Xn) — ENa(Xn) = (1= OAa(Xn)-
welm™
So, putting ¥ = 1 — £ finishes the proof. [ |

Theorem 4.5. If S is a regular c.i.f.s. and Ag(Int(X)\ X1) > 0, then h = HD(J) <
d. If conversely )\d(X \ Xl) = 0,then S is regular, A\g(J) = Ag(X) > 0, in particular,
HD(J) =d, and Ag/Aq(X) is the only conformal measure.
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Proof. In order to prove the first part suppose to the contrary that h = d. Then for
every w € I* and every Borel set A C X with Ay(A) > 0 we have
m(A)
Aa(A)

(A1) () < HLIm(A) = K6l Al T K < Al () K

For every n > 1 and every w € I" define Y, = ¢ (X) N U, ¢rn\ (o} 7 (X). Then the sets
¢ (X)\ Yy, w € I, are mutually disjoint, in view of (2.14) m(Y,,) = 0 for all w € I"™, and
¢ 1(Y,) C 0X by (OSC). Therefore, using (4.1), we get the following estimate

m(Xn) = Y m(¢u(X)\ V) = > m(bu(X\ 651 (Yo)))

» m(X \ ¢5 (Vo))
< Z Ma(9u(X\ 95 (V) K = rmer s
Kd

Swiee) Int ; Ma(Bo(XINY) < Sy M)

Thus, by Proposition 4.4, m(J) = lim,, o, m(X,) = 0. This completes the proof of the
first part.

Moving to the other part of the theorem notice first that for every n > 0 we have

Xo\ Xnr1= {J 6u(X)\ | ¢o(X1) € | ($u(X)\ (X)) = (] du(X\ X1).

welm weln welm weln

Since Ag(X \ X1) = 0, we therefore obtain Ag(X,, \ Xn41) = 0 or equivalently \g(X,,) =
Ad(Xn+1). Hence Ag(J) = limy 00 Ad(Xy) = Ag(X) > 0. In particular h = d. Now, it
follows from Lemma 2.5 that d € F/(S) and P(d) < 0. And since ¢, (d) > )\d(X) for all n >
0, we conclude that P(d) = 0, thus S is regular. Since obviously Ag(¢w(A)) = [, |4, |* dAqg
for all » > 0 and all Borel subsets A of X, all the assumptions of Lemma, 3 10 are satisfied
and therefore A\;/\;(X) is d-conformal. So, applying Theorem 3.18 finishes the proof. W

Remark 4.6 As Example 5.3 shows Theorem 4.5 fails to be true if regularity of
the system S is relaxed, that is if S is irregular, although still, as Proposition 4.4 says,
Ada(J) = 0 and the Lebesgue measure of the sets X, decreases to 0 exponentially fast.

We would also like to point out that positivity of the Lebesgue measure of Int(X)\ X7,
the assumption of both Proposition 4.4 and Theorem 4.5 is obviously satisfied if the interior
of the set Int(X) \ X is nonempty.

Theorem 4.7. Suppose that S = {¢; : i € I} is a regular c.i.f.s. Then the following
conditions are equivalent.
(a) S is reqular and hg > fg.
(b) There exists a proper cofinite subsystem S" of S such that hg < hg.
(¢) For every proper subsystem S’ of S we have hg: < hg.
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Proof. That (¢) = (b) is obvious. The implication (b) = (a) follows from Theo-
rem 3.22 and Theorem 3.23. Thus, we are only left to show that (a) = (¢) and we only
need to do it for cofinite subsystems. So, consider a proper subsystem S’ = {¢; : i € I}
of S. Suppose first that S’ is irregular and fix any number « € (fs, hg). By Lemma 3.19
Pgsi(a) < oo and therefore by Theorem 3.15, hgs < a < hg and we are done in this case.
So suppose that S’ is regular and additionally suppose to the contrary that h = hg: = hg.
Let m and m’ be h-semiconformal measures associated respectively to the systems S and
S’ and let p and p' be corresponding probability measures on I and I’ produced
by Lemma 3.6. In view of (BDP), for every w € I'* we have [|¢}|"dm < |¢L|"
and [[¢,|"dm > K~"|¢,[|", and consequently 4/([w]) < K"u(lw]). Notice now that
I'™° C I*® and ' can be regarded as a probability measure on I°°. Then this last in-
equality enlarged by the formula p'([w]) = 0 for w ¢ I'* implies that u' is absolutely
continuous with respect u (even dy'/dy < K™). Thus it follows from Theorem 3.8 that
p'* is absolutely continuous with respect to p. Since moreover, by Theorem 3.8, both
measures p* and p'* are ergodic and o-invariant on I*° (the reader is encouraged to make

himself certain about it for u'), they must coincide. This however is a contradiction as
p*([k]) < K°u/'([k]) = 0 and p*([k]) > K—°u([k]) > 0. The proof is finished. [

In view of Theorem 3.20, hg > g for every hereditarily regular system S. Therefore,
as a consequence of Theorem 4.7 we get the following.

Corollary 4.8. it If S = {¢; : i € I} is a hereditarily regular c.i.f.s. and S’ is a
proper subsystem of S, then hg: < hg.

Lemma 4.9. If S = {¢; : i € I} is a reqular c.i.f.s. and there exist a sequence of
points z; € X (00) and a sequence of positive reals {r; : j > 1} such that

Bz s
hm sup m( (z},l}?/rj))
j—00 Tj

= 00,

then Hy(J) = 0.

Proof. Fix € > 0 and take z = zj, r = r; < dist(X, dV) such that m(B(z,r))r " >
e~1. Consider J,, to be the subset of those points = in J that can be expressed as
x = m(w), where each element of I appears in w infinitely often. Since z € X(c0) and
by (2.5), there exists i € I such that ¢;(X) C B(z,r). Consider an index k£ > 1 such
that wy = ¢ and denote by 1 the map ¢,,, ,. By (BDP.1) B(¢(z), [[¢'||r) D % (B(z,7)),
in particular dist(x,1(z)) < ||¢'||r. Consequently B(z,2||¢'||r) D ¢¥(B(z,r)). Thus, by
semiconformality of m, (BDP), and the choice of ¢ we get

m(B(z,2|[¢'||r)) > K"/ |[Pm(B(z,7)) > e K|y |[P+"
= e 2K) (2| 1¢)r)"

Hence, applying Theorem 2.8(1) and then letting e — 0 we get Hj,(Jw) = 0. The same
argument as in the proof of Lemma 4.3, based on ergodicity of ¢ proven in Theorem 3.8,
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gives m(J \ J) = 0 and therefore by Lemma 4.2, Hy(J \ J») = 0 which completes the
proof. [ |

Lemma 4.10. Let S = {¢; : i € I} be a regular c.i.f.s. Suppose that there are
two constants L > 0, € > 0, and v > 1 such that for every i € I and every r with
ydiam(p;(X)) < r < € there exists y € ¢;(V) such that m(B(y,r)) > Lr". Then 11, (J) <
+00.

Proof. First notice that by increasing L if necessary, the assumption of the lemma
continues to be fulfilled if the number £ is replaced by any other positive number. We
take £ = /2, where n = dist(X,0V). We can also assume D731 < 1. Fix 0 < r < £,
x = m(w) € J, and take maximal £ > 0 such that

(4.2) bu, (V) D B(z, D™?r).

Abbreviate ¢,,,,, by t. Then 1(V) does not contain B(z, D~?r) and, as by (BDP.4),
Y(V) D B(x, D7|Y'|]), we find D=2r > D7Y|¢'||. Hence, by (BDP.2), B(z,7) D
B(z, D||¢¥'||) D ¥(V) and therefore, using semiconformality of m we get m(B(x,r)) >
KM "m(V) = K="||[y'[|*. If now yDK|[9)'|| > (2D®)~'nr, then

B
m( TF}'Z:?T.)) Z nh(2D4K2,Y)—h.
Otherwise,
(4.3) YDK|[Y'|| < (2D%) "1y

Set now g = ¢, ,, and let y be an arbitrary point in g(V). Since diam(g(V)) < D||g'||
and since v > 1, it follows from (4.3) that

(4.4) B(y, (2D°) " nllg,, [17'r) € B(n(o"(w)), D™ nllg,, [17"r).
From (BDP.1)

Py (B(m(0"(w)), D7 nll¢y,, ||7'r) € B(z, D™%nr)
(4.5) C B(z,r).

In view of (4.3), we have (2D?)~'n||¢/, ||'r > ~diam(¢(V)). By (4.2) and (BDP.2),
D=3||¢L,, ||7'r <1, hence (2D%)~™n]|¢., ||='r < 1/2. As the number (2D%)~'n]|¢., [|~'r
does not depend on the choice of y € g(V'), we can assume that y satisfies the assumption
of our lemma. Using this assumption, it follows from (4.4) and (4.5) that

m(B(x,r)) > K~"||¢},), I"LED*) " n" |4, [|7"r" = Ly" (2D K) = r".

The proof is finished. |

Lemma 4.11. Let S = {¢; : i € I} be a reqular c.i.f.s. Suppose that there are two
constants L > 0, v > 1 such that for every i € I and every r > ydiam($;(X)) there exists
y € ¢;(V) such that m(B(y,r)) < Lrh. Then Hy(J) > 0.
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Proof. Set n = dist(X, V). Without loss of generality, we can assume that ydiam(X)
> 1. Take an arbitrary x € J and radius r > 0. Set 7 = 2KDn~!r. For every z €
B(x,r) N J consider a shortest word w = w(z) such that z € 7([w]) and ¢, (X) C B(z,7).
Then diam(é,,, _, (X)) > 7. Let R = {w(2)|ju(z)|-1: 2 € JN B(z,r)}. Notice that R is
finite since lim;er diam(¢;(X)) = 0 and since lim,,_,~ sup{diam(¢, (X)) : w € I"} = 0.
Therefore we can find a finite set {z1,22,...,2x} C J N B(x,r) such that the family
R* = {w(2j)|jw(z)-1:J = 1,...,k} C R consists of mutually incomparable words and the
family {7(w(2j)|jw(z;)-1:7 = 1, ., k} covers B(x,r)N.J. Now, temporarily fix an element
z € {21,722, -, 2}, set w = w(2), ¢ = |w|, and P = ,,,_,. Since diam(y(Int(X))) > 7,
it follows from (2.10) that Ag(v(Int(X)) N B(z,7)) > BVaD~2Prd. Therefore 24V 7% =
Ma(B(z,27)) > #R*BVyD~2P74 which implies that #R* < (2D?)?31. By the choice of
w we have D™K ~H|¢'[| -||¢], || < 27, whence 2K D?[|¢)'||~'7 > Dl|¢;, || > diam(¢y,, (X)).
So, if y € ¢y, (X) is the point from the assumptions of the lemma corresponding to the
radius 4yK D?|[¢'||~1F > 2ydiam(¢, (X)), using (BDP.3) and inequality 2rK||¢||~! <
2r K D7~! = 5, we can estimate

B(x, 1) Np(X) C B(z,2r) N p(X) C (B(y~ (2), 2rK|[¢']| 7))

C ¢(B(y, 27K |[¢'|| 7" + 27 K||¢']| "' D?))
C ¢(B(y, AD’K||¢'||7'7))

So, by assumptions of the lemma,
I\1h 2 1
m(B(z, ) N(X)) < [|¢'[|"m(B(y, 4D°K|[4'||~'7))
< ||¢/[|"L(4D2K ||y'||~'7)" = L8D* Ky~ ")

Therefore m(B(z,r) < #R*L(8D3K?n~1)rh < (2D?)3-1L(8D3K2n~1)"rh and apply-
ing Theorem 2.8 finishes the proof. |

Lemma 4.12. If S = {¢; : i € I} is a reqular c.i.f.s. and there exist a sequence of
points z; € J and a sequence of positive reals {r; : j > 1} such that B(zj,r;) C X and

m(B(zj,75))
;],

lim inf
Jj—ro0 r

=0,

then T, (J) = oo.

Proof. For every 7 € I'* denote by R, the set R defined in the proof of of Lemma 4.3.
It has been shown there that u(R,) = 1, and therefore, as I'* is countable, M(ﬂreI* RT) =
1. Thus, it follows from Lemma 3.7 that m(J,) = 1, where J, = (N, ;- R;) is the set of
those points 2z € J that can be expressed as 2 = w(w) and each element of I* appears in
w infinitely often. Fix e > 0. By the assumption there exists z = z; = 7(p) and r = r;/2
such that m(B(z,2r))r~" < K="e. Take p > 1 so large that diam(¢,, (X)) < r. By the
definition of J, there exists ¢ > 1 such that w|jg41,g4p] = plp- Thus dist(7(0?(w)), z) <
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diam(¢,), (X)) < r, whence B(n(c?(w)),r) C X. Therefore using (BDP.3) first and then
(BDP.1), and conformality of m

m(B(m(w), K|y, lIr) < m(bu),(B(r(o?(w)),r) < [}, [I"m(B(r(c?(w)),r))
< Ig, IMm(B(z,2r) < ||gL, [1"K e = (Kl [Ir)"e

Since m(.J,) = 1, the application of Theorem 2.9(1) finishes the proof. [ |

Lemma 4.13. Suppose that S is a regular c.i.f.s. and there exists z € X (00) such
that limsup,_,, m(B(z,7))/r" = 0. Suppose also that there exists an open cone C(z) C X
with the vertex z such that z € JNC(z). Then II,(J) = oco.

Proof. By the second assumption there exists an infinite sequence z; € JNC(%) such
that lim z; = z. Since C'(z) is a cone there exists 0 < oo < 1 such that for all j sufficiently
large, passing to a subsequence we can suppose that for all j, we have B(z;j, alz; — z|) C
C(z). Hence B(zj,a|z; — z|) C X and m(B(zj,alz; — z|)) < m(B(z, (1 + a)|z; — 2|)).
Therefore, in view of the first assumption of Lemma 4.13 the assumptions of Lemma 4.12
are satisfied and the proof is completed. |

As an immediate consequence of this lemma and Corollary 3.24 we get the following.

Corollary 4.14. Suppose that S is a c.i.f.s. and X is a compact nondegenerate
subinterval of the real line. If there exists z € X (00) such that limsup,_,o m(B(z,7))/r" =
0, then I, (J) = oco.

Lemma 4.15. If S = {¢; : i € I} is a reqular c.i.f.s., there exist a sequence of points
zj € X (00) and a sequence of positive reals {r; : j > 1} such that lim;_,oc m(B(z;, rj))/r;?
=0, then I, (J) = oo.

Proof. By the assumption of the lemma there exists § > 0 such that ¢;(B(z, 8))NJ =
¢i(JNB(z,3)) and therefore for every 0 < r < 3 we have m(¢$;(B(z,1))) = fB(z,r) PP dm.
Let Jo be the subset of those points x in J that can be expressed as © = 7(w), where
each element of I appears in w infinitely often. So, for every x € J,, and every r > 0
there exists ¢ > 1 such that dist(z,7(c%(w))) < r and diam(¢,,_,,(X)) < r. The rest of
the proof is the same as the corresponding part of the proof of Lemma 4.12. [ |

Theorem 4.16. If S is irregular, then either measure Hy(J) or I14(J) is either zero
or infinity for every gauge function g of the form t"L(t), where L(t) is a slowly varying
function. Additionally Hn(J) = 0.

Proof. Suppose that a measure Hy(J) or II,(J) (call it Gy) is finite. Then the
Jacobian (Radon-Nikodym derivative) of a map ¢,, w € I*, with respect to the mea-
sure G, is equal to |¢),|". By the definition of pressure there exists ng > 1 such that
> wern |OL1" < exp(nP(h)/2) for every n > ng. Hence

Gy(1) < D Gy(di(D) < D 110L1["m(]) < exp(nP(h)/2)Gy(J)

welm™ welm™
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Thus letting n — oo and noting that by Theorem 3.21 P(h) < 0, we obtain G4(J) = 0.
The proof that Hy(J) = 0 is very similar but requires slightly different argument as we do
not know whether Hy (.J) is finite. Indeed, if n > ng is as above, then

> (diam(i(X))" < 37 DMIgLlI" < D" exp(nP(R)/2)

weln weln
and letting n — oo we conclude that Hy(J) = 0. [

Theorem 4.17. If S is a c.i.f.s., g(t) is a gauge function of the form t"L(t), where
L(t) is a slowly varying function, and one of the numbers Hy(J) or I14(J) is positive and
finite, then the system S is reqular and the conformal measure m is up to a multiplicative
constant either equal to Hy or I1,.

Proof. That the system S is regular follows immediately from Theorem 4.16. The
other part of the theorem follows now from Lemma 3.10 applied with the measure v being
either Hy/H,(J) or I1,/|Pig4(J) and from Theorem 3.18. |

As an immediate consequence of this theorem and Lemma 3.14 we get the following.

Corollary 4.18. If a c.i.f.s. S is finite, then, up to a multiplicative constant, the
following three measures on J are equal: Hy, Ily,, and the conformal measure m.

5. Examples

In this section we provide a number of examples of infinite c.i.f.s. showing how flexible,
how large a variety of fractal features one can meet among them.

Example 5.1. (J is an F,5 but not a G5). Denote by @ the set of all rational
numbers in [0,1]. Let X = [0,1] x [0,1] and let A = {(z,z) € X} be the diagonal of X.
Consider a c.i.f.s. {¢; : X = X : i € QU {—1}} consisting of linear mappings and such
that
(a) ¢(X)NA={$;(0,1)} = {(i,i)} for all i € Q
(b) 61 (5,9) = (5/2, (v +1)/2)

(c) The sets ¢;(X), i € QU {—1}, are mutually disjoint.

Then J N A = @ is not G4, so neither is J. Let us also note that this system is not

locally finite. |

Example 5.2. (PD(J) > BD(J) > HD(J)). Take any sequence of positive numbers
{r; : i > 1} (for example of the form b, 0 < b < 1) such that the equation ) .o, rf =1
has a (unique) solution and this solution is less than 1. Consider a family {¢; : {z € C':
|z| <1} = {z € @: |z|] <1} :i > 1} of similarity maps satisfying the (OSC) and such
that ||¢}|| = r and X(oo) = {z : |2| = 1}. Then by Theorem 2.8, PD(J) > BD(J) >
BD(X(00)) > 1 and by Theorem 3.15, HD(J) < 1. [
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Example 5.3. (Irregular system). Such a system has been described in Ex. 4.5 of
[17]. Since this is a very short and important example we repeat here its construction.
Let I ={(n,k):n>1and1<k<2""1} let X =[0,1], and let § = {ppp: X = X :
(n,k) € I} be a system consisting of similarity maps ¢, j such that [|¢;, .[| = 2-(n"+n) and
such that the intervals ¢,, 5 (X) are mutually disjoint. This last requirement can be satisfied
since -, pyer 100 1l = 251 9=(*+n)gn®~1 — 1/9 < 1. Notice that by this computation
we have shown that (1) = 1/2 < 1. Observe also that ¢(t) = > <, gn’—lg—(n’+n)t —

Yot on’(1=t)—nt—1 —  for all 0 < ¢ < 1. Thus, in view of Theorem 3.21 S is irregular,
in view of Theorem 3.22 h = HD(J) = 1, and in view of Theorem 4.16, .J is dimensionless
in the restricted sense. [

Example 5.4. (Linear, regular but not hereditarily regular). This example is very
similar to the Example 5.3. The only difference in its definition is that now we take
I={(nk):n>1and1 <k < 2"}, Then the same computations as in Example 5.3
above show that (1) = 1, thus P(1) = 0, and ¢ (¢) = oo for all 0 < ¢ < 1. Hence, in view
of Theorem 4.5, S is regular, the only conformal measure is the Lebesgue measure Ay, and
h = HD(J) = 1. Moreover in view of Theorem 3.20, S is not hereditarily regular. [

Notice that Example 5.4 provides a number of irregular examples. In fact every cofinite
subsystem of S is irregular.

Example 5.5. (Hereditarily regular linear system with 0 < Il (J) < oo, Hp(J) = 0).
Let X =[0,1] and let S = {¢,, : X — X : n > 1} be the c.i.f.s. consisting of similarities
dn(z) = 3% + £ — 315 so that ¢,(0) = L — 215 and ¢,(1) = . Thus ||¢,|| = 52z and
Pt) = s Ll = >0, 5137 n2. Hence h = HD(J) > 1/2 and by Theorem 3.20 S
is hereditarily regular. Let m be the corresponding conformal measure. Then for every

n>1

1 \" o0 1 1\ 21
_ —h —2h g _ a—h
m(B(O,l/n))—Z<ﬁ> >3 /n = dr =3 51 (ﬁ) :
k>n

Taking now for any 0 < r < 1 the unique integer n > 1 such that 1/(n+1) < r < 1/n, we
get m(B(0,7)) > Cr2"=1 where C = ((2h — 1)3722h=1)=1 Since h — 1 < 0 it now follows
from Lemma 4.9 that Hp(J) = 0. Positivity of II,(.J) is guaranteed by Lemma 4.3. We
now show that the assumptions of Lemma 4.10 are satisfied with v = 3 if for every n > 1
the point y is chosen to be 1/n. Indeed, fix n > 1 and take 1/n? < r < 1. Suppose first that
r <1/(2n). Thenn > 2 and + —r > 5. Let[(r)z{kZl:%S%andﬁZ%—r}.
Notice that #I(r) > (1/n—7)~! —n =n?r/(1 — nr) > n?r. Therefore

m(B(1/nn) = 3 (%) > (ﬁ)h#rm > (12)*n~ 2y >

keI(r)



Now suppose that 1/(2n) < r < 2/n. Then 1/n? < r/4 < 1/(2n) and in view of the
previous case m(B(1/n,r)) > m(B(1/n,r/4)) > (12)7"(r/4)" = (48)~"r". Finally sup-
pose that r > 2/n. Then B(1/n,r) D B(0,7/2) > C(r/2)?"=1 = 204="rhyh=1 Thus the
assumptions of Lemma 4.10 are satisfied and therefore I, (J) < oo. |

We should mention here that in the next section the c.i.f.s. induced by complex
continued fractions will be considered which is also hereditarily regular and whose limit
set has h-dimensional Hausdorff measure 0 and of h-dimensional finite packing measure.
The idea for proving these properties will be the same there as in Example 5.5.

Example 5.6. (Hereditarily regular linear system with I, (J) = oo, Hy(J) > 0). Let
X =[0,1] and let S = {¢,, : X — X : n > 1} be the c.i.f.s. consisting of similarities
bp(r) = 272"z + 27" — 272" 50 that ¢,(0) = 27" — 272 and ¢,(1) = 27™. Thus
oLl =272 and (t) = >, o1 ||¢LIF =D, 51 272", Hence h = 1/2 and by Theorem 3.20
S is hereditarily regular. Let m be the corresponding conformal measure. Then for every
n > 1 we have m(B(0,27")) = Y, 27%kh = 2(272"h), Taking now for any 0 < r < 1/2
the unique integer n > 1 such that 2= 1 < < 27" we get

m(B(0,r)) < 4p2h,

Thus, I, (J) = oo by Corollary 4.14. Finiteness of Hy(.J) is guaranteed by Lemma 4.2.
We now show that the assumptions of Lemma 4.11 are satisfied with v = 1 if for every
n > 1 the point y is chosen to be 27", Indeed, fix n > 1 and take 272" < r < 1/2. If
r > 27" then m(B(27",r)) < m(B(0,2r)) < 4(2r)%" = 82", In general case /2 > 27"
and then m(B(2™",7)) < m(B(27",r'/2)) < 8(r'/?)2" = 8" Thus the assumptions of
Lemma 4.11 are satisfied and therefore Hy(.J) > 0. [

Example 5.7. (Hereditarily regular linear system with Il (J) = oo, Hp(J) = 0).
This example is made up by gluing together Examples 5.5 and 5.6. Namely let X = [0, 2]
and S = {¢n,0,Pn1 : n > 2}, where ¢, 0(7) = 352+ 1 — 2L and ¢, 1(2) = 272" +
2-n 9720 1. Then g o([0,2]) = [% — 5s. 1] € [0.1/2] and g, 1 ([0, 2]) = [2-7 — 272 1
1,27 41 € [1,2) and 9(8) = X1 pll’ + [#allt) = 3oy 6-tn=2 + 2702201,
So, the interval of convergence of ¢ (t) is (1/2,00). Thus, in view of Theorem 3.20, S
is hereditarily regular and h = HD(J) > 1/2. We see that X (oo) = {0,1} and if m is
the corresponding h-conformal measure, then as in Example 5.5 we get m(B(0,1/n)) >
(2h — 1)71(1/n)*"~1 which in view of Lemma 4.8 implies that Hy(J) = 0 and as in
Example 5.6 we get m(B(1,27 ")) < 4h(4" — 1)=1(27")2" which in view of Corollary 4.14
implies that ITj(J) = oc. [

Example 5.8. (One-dimensional systems). Here we want to describe how every
compact subset F' of the interval X = [0,1] gives canonically rise to a linear c.i.f.s. on
X such that X(o0) = (0F)¢ = {z € X : z is an accumulation point of F}, the Cantor-
Bendixon derived set of OF. Indeed, let R be the family of all connected components of
X \ F and for every C € R let ¢c : X — X be the unique linear map such that ¢¢(0) is
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the left endpoint of the closure of C' and ¢¢(1) is the right endpoint of the closure of C.
The system S = {¢¢c : X — X : C € R} has the property required. |

Example 5.9. We want to describe here an example of a hereditarily regular c.i.f.s.
S such that

(a) Condition (c) of Lemma 2.2 is not satisfied.
(b) Condition (a) of Lemma 2.2 is satisfied for every finite subsystem of S.
(¢) The Perron-Frobenius operator is almost periodic.

Indeed, let {r, : n > 1}, 0 < r, < 1, be any sequence of real numbers such that
> .1 Tn < 1 and the set of parameters ¢ for which the series > <, rf converges, is open.
Let {[a,.b,] : n > 1} be a countable disjoint family of closed subintervals of the interval
[0, 1] such that b, —a, = r, for all n > 1. Finally let {g,, : [-1,2] — [1,2] : n > 1} be
a familly of continuous functions that are constant on each interval of the form [ag, bg],
k > 1. Moreover we can choose these functions g, not to form an equicontinuous family,
and with a suitable choice of numbers r, and suitable placing of intervals [a,,, b,] we can
require all g,, to be Lipshitz continuous.

Now we have all ingredients needed to define our system S. We declare X = [0, 1],
V = (-1,2), and for every n > 1 we define the map ¢,, : [-1,2] — R, setting

T

gn(t) dt,
1

bn(x) = ap + mn/

where m,, = (b, — an)(f_zlgn(t) dt)~1. Note that ¢,(—1) = a, and ¢, ([—1,2]) = [an, bs].
Since ¢}, (z) = mpgn(z) < 2(bp —an) < 2/3, the maps ¢y, n > 1, form an iterated function
system and in order to show its conformality our only task is to check that (BDP) holds.
Indeed, for all integers n,k > 1 set y(n,k) = mygn(ax). Then for every n > 1, every

w € I", and every x € [0, 1] we have

(5.1) ¢(/u () = v(wi,w2)y(w2,ws) - . .Y (Wn—2, Wn—1)Y(Wn—1, Wn) M, Gu, (T).

But since gi(y)/gr(z) < 2 for all k > 1 and all z,y € [—1, 2], we see that |¢],(y)|/|oL, ()| =
9w, (Y)/Gw, (x) < 2 for every n > 1, and every w € I"™. The proof of (BDP) is finished.

The almost periodicity of the Perron-Frobenius operator also follows from (5.1) since
then all its iterates are constant on the segments of the form [a,,, b,] and therefore we can
apply Lemma a.6.

In order to see that the system S is hereditarily regular note that r, /6 = (b, —a,)/6 <
|#2]| < 2(b, —ay) = 27y Therefore F(S) is an open set and the required property follows
from Theorem 3.20.

Now, that condition (a) of Lemma 2.2 is satisfied for every finite subsystem of S
follows immediately from the properties of g, and the formula ¢/, (z) = myg,(z). Since
log |¢7, (y)| —log ¢y, ()| = log(gn(y)) —log(gn(z)) = B(gn(y) —g()) with some 1/2 < 3 <1,
and since the family {g, : [-1,2] — [1,2] : n > 1} is not equicontinuous, we see that
property (c) of Lemma 2.2 fails. [ |
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6. Complex continued fractions

In this section we focus our attention on a special infinite iterated function system,
introduced and studied in [11], that is generated by complex continued fractions. Namely,
let I = {m+mni: (m,n) € IN x Z}, where Z is the set of integers and IV is the set of
positive integers. Let X C @ be the closed disc centered at the point 1/2 with radius 1/2
and let V = B(1/2,3/4). For b € I we define ¢ : V' — V putting

B 1
b+ 2z

P (2)

The following figures illustrate the construction of J.

FIGURES GO HERE
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Using the Koebe distortion theorem the following properties can be easily checked by
a straightforward direct computation. There exists a constant K > 1 such that for every
bel

(6.1) ¢(V) C B(0,K[b]™h)
(6.2) K='b| 72 < [y (2)| < K [b| ™2
(6.3) K~Hb|7? < diam(¢y(V)) < K|b| ™2

One would like to call the collection of mappings {¢ : b € I} a conformal iterated func-
tion system. This however is not quite possible as ¢7(0) = —1 and condition (2.1) fails.
Nevertheless, since it is satisfied for the system {¢y o ¢ : (b,c) € I x I}, in the sequel we
will treat the family {¢, : b € I} as a c.i.f.s.. Let J denote the associated limit set. We
begin with the following.

Proposition 6.1. The system S = {¢p : b € I} is hereditarily reqular and 0(S) = 1.
Proof. For every n > 0 set I(n) = {b € I : 2" < |b| < 2"*}. Notice that there
exists @ > 1 such that 14" < #I(n) < 4a - 4". Therefore (4ta)~ 1Y ., 4070 <
470N o)A < BT < S S # ()4 < daY, o 40707 for all ¢ > 0.
Hence, using (6.2) we get (4'K*ta)™1>" (400" < o(t) < 4aKt) ,4079" Thus
6(S) =1, (f) = oo, and in view of Theorem 3.20 our system is hereditarily regular. W

In view of this proposition, the last assertion of Theorem 3.20, and Theorem 4.5 we
get the following result which was first proved in [11] with different methods.

Theorem 6.2. 1 < h = HD(J) < 2.
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Let m be the h-conformal measure associated to the system S = {¢ : b € I'}. The
proof of the following lemma is based on the same idea as the proof of Proposition 6.1.

Lemma 6.3. There exists a constant Q > 0 such that for every 0 < r < 1 we have
m(B(0,r) > Qr2h=2,

Proof. Let I(r) ={bel:r/2 < Kp|"' <r}={bel:Kr ! <|b <2Kr 1}
Observe that there exists o > 0 so small that #1(r) > a(Kr~1)%. Therefore using (6.1) —
(6.3) we get

m(B(0,7)) > #I(r)K " "(2K) 722l > 2720 230 2h=2
The proof is finished. [ |
Since 0 € X (o00) and since h < 2, this lemma and Lemma 4.9 give the following.
Theorem 6.4. H,(J) = 0.

Now, we shall prove the following.

Theorem 6.5. 0 < I, (J) < 4o0.

Proof. Positiveness of II;(.J) follows from Lemma 4.3. In order to prove that II;(J)
is finite we will check that the assumptions of Lemma 4.10 are satisfied. So, let b € I and
let z € ¢p(V). Consider |z|? < r < 1/64. Define I(x,7) = {a € I : ¢o(X) C B(x,7)}. Let
In(z) be the inverse function, In(z) = 1/z. Notice that if 0 < r < |z], then

(6.4) In(B(x,r)):B( 2" 1 WT 2)

FERrCE:
I(x,r)={a€l:In(B(zx,r)) D Bla+1/2,1/2)}
Suppose first that r < |z|/2. Then |z|*> — r? > 3|z|?>/4 and therefore

e 41
2|2 —r2 = 3|z

(6.5)

Let now I1y = {a € I(x,r) : |a] < W} Since |z|/(]z|* —r?) is the modulus of the center

of the ball In(B(z,r)), there exists 8 > 0 such that #I; > pr?/(|z|?> — r?) > Br?/|z|2.
Therefore by (6.2), (6.5) and since r > |z|?> we may write

7,2

m(B(z,r)) > #LK"(9/16)"z|*" > 5(2K)—h|x|2hW

= BRE) a2 p20K) T e
(66) — ﬁ(QK)_hrh’
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Now suppose that |z|/2 < r < 2|z|. Then |z|?> < r/4 < |z|/2 and therefore by (6.6)
(6.7) m(B(x,r)) > m(B(x,r/4)) > BSK) hrh

Finally if r > 2|z|, then B(z,r) D B(0,r/2). Thus, in view of Lemma 6.3, and since h < 2,
we can estimate

m(Ble.r) > Qr/2)7—2 = Qai=Fph=2yh > Qui—lh

Combining this estimate, (6.7), and (6.6) we conclude that the assumptions of Lemma 4.10
are satisfied which completes the proof. |

The rest of this section is devoted to estimating the Hausdorff dimension A of the limit
set J of complex continued fractions improving quantitatively Theorem 6.2. Let us state
our estimates as a theorem.

Theorem 6.6. If J is the limit set of complex continued fractions, then

1.2484 < h = HD(J) < 1.9.

Proof. Note that, if w = (b1, bs,...,b,) € I", then

bu(2)

_ pn—l(w)z +pn(w)
Qn—l(w)z + dn (w)

where po(w) = 0, p1(w) = qo(w) = 1, and q1(w) = b1; qr(w) = bpgr—1(w) + qr—2(w),
pr(w) = bgpr—1(w) + pr—2(w), 2 < k < n. Frequently we will write g, and p,, only instead
of ¢, (w) and p, (w). With this convention ¢,,(X) is the ball with center

2Qn—1|Qn—1 + 4Qn|2(ann—1 - pn—lQn) +pn—1(|Qn—1 + 4(]n|2 - 4|Qn—1|2)(%21_1 + 2Qn—1(In)
Gn-1(lgn-1 +4qn)? — 4lgn-11%) (¢} _1 + 2Gn-14n)

and with the radius

2
|Qn—1 + 2Qn|2 - |Qn—1|2
Moreover
dnPn—1 — PnQn-1 (_1)n / 1
¢, (2) = 5 = 5 and ¢, (2)| =
(Qn—lz + Qn) (Qn—lz + Qn) |qn_1|2 z+ qul

Set w = ¢,/qn—1 and consider the circle with center w + 1/2 and of radius 1/2. Let
a(w +1/2) and B(w + 1/2) be the two points of this circle lying on the line through 0 and
w + 1/2 with a(w + 1/2) closer to the origin. Then

oLl = ——s {—1 | 1/2|<1/2} ! !
= up Dz — < =
v |gn—1]? |z + w|? lgn—1]? @?|w + 1/2]?
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and

1

e

1 1 1
inf lz—1/21<1/2 % = )
{|z+w|2 l2=1/21 < /} i Plo + 1/2P

Since |a(w +1/2) — (w +1/2)| = |B(w +1/2) — (w + 1/2)| = 1/2 , this gives
1 4

o !l = — = 2

sl (17 + 3= 3) (124 21— 1222

and
1 4

7 = z
a2 (122 + 314 3) laal? (124 2222 4 222

160l =

Since |2 + gn—1/qn| = |gn—1/qn| > 1 and since 2+ ¢n—1/qn| + [gn—1/qn| < 3, we thus get
L I] < 4/]an|* and inf [¢,| > 4/(9]gn|?). Set

1

0= 2, e

|w|=n

Since ¥ (t) < 4'Fy(t) and since 1 (t) > (4/9)"F,(t), it follows from Lemma 4.1(c) that h
is the only number ¢ such that for all n

47 < FL(t) < (9/4)%

Thus, if F},(t) > 81/16, then ¢ < h and if F},(t) < 1/16, then h < t.

Now let 79 = 0 < 71 < 772 < ... be an increasing sequence of integers. Then summing
over sectors we can write

=1 1
Fiy=> —+>. > > m? LBy

m=1 m=1j=1 v, ym<|n|<y;m

S 1
:C(Qt)+QZWZ > T )

m=1 J=lyj_1m<n<ly;m

If mryj_1 < |n| < meyj, then 1447 <1+ (n/m)? <1+ 4% So,

Vi~ V-1 o Y~ V-1

2t) +2¢(2t — 1 —— < Fy(t) < ((2t) + 2 (2t — 1 —
o + 2003 T < R0 < (s e DY P
Choosing the 7is so that 72, (v; — vj-1)/(1 + 77)" is as close to 1 as we like we see
that Fi(t) < ¢(2t) +2¢(2t —1). Using v; = j, 7 = 0,1,..., we find ((2¢t) + 2¢(2t —
)32, W < Fi(t) or ¢(2t) + 2¢(2t — 1)(¢(2t) — 1) < Fy(t). We find Fy(t) > ((2t) +
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2¢(2t — 1) 2?21 ﬁ > 81/16 with ¢ = 1.2484 by setting £ = 1500 and evaluating the

middle term with Mathematica.

In order to obtain an upper bound on the dimension of .J we employ a general geometric
technique as in [11] and the properties of pressure function. Namely, if o and ¢ are such
numbers that for each w = (b1, ba, ..., by)

B diam(pes(D))\*
m“”‘%?(&w@AD»><”SL

then HD(J) < t. In fact this inequality implies that P(¢) <logo < 0. In our case ¢, (X))
is a disc with radius 2/ (|gn—1 + 2¢n|? — |gn—1/?). So,

R(w,t)=3" <|2 +Gn_1/an|* — |qn_1/qn|2>t
b

|2b+ 1 + 2Qn—1/Qn|2 -1

Set

12+ 22 — |22 y

M(k,t) =
(k. t) = max . <|2b+1+2z|2—1

where the sum is taken over all b = m + ne, with 1 < m < k and —k < n < k. Then for
all w

E+1\! 1 o2 +1 1
< =M 2t
R(w,t) < g(k,t) (k,t) + ( k > E2t—2 <(2t—1)2k+2t—2>’

the second term being an upper estimate on the remainder of the series R(w,t). Using
some estimates for numerical approximation and especially some programs written by
Barbara Neuberger (which can be obtained through us), we find that M (70,1.9) < 0.99
so that ¢(70,1.9) < 1 and HD(J) < 1.9. We also note that this method fails at 1.88 since
M(50,1.88) > 1. Further studies with this method show that HD(J) < 1.885. To obtain
sharper bounds on HD(.J), improvements will be needed in our estimation methods, the
programs and computing power. |

Remark 6.7. Observe that proving estimates on ||¢/,|| and inf |¢/,| we have simulta-
neously provided techniques to find the best possible distortion constant K. Indeed, with
the notation of the proof of Theorem 6.6 it was shown in [11], that |1/w — 1/2| < 1/2,
where w = ¢,,/¢n—1. Thus Rew > 1 and

pe, ()] }
Kw - : - 9 - =
sup { oL @) e —1/2|, ]y —1/2| <1/2
+ 2
zmm{%:%%:w—lﬂMy—UMSIQ}-
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Therefore K, = |B(w + 1/2)|?/|a(w + 1/2)|?> = 32/a?. Rotate the line 0,w + 1/2 to the
positive z-axis with w + 1/2 — (z,0), a(w + 1/2) — (z — 1/2,0), and B(w + 1/2) —
(r +1/2,0). Note that = > 3/2. So, 3?/a? = (z + 1/2)?/(z — 1/2)? and the maximum
value occurs when z = 3/2. Thus K = sup K, = 4.

7. Problems

In this section we provide the reader with several problems.

Problem 7.1. What is the Hausdorff dimension HD(.J) of the limit set J of complex
continued fractions described in Section 67 We feel that there is a good possibility that
HD(J) will turn out to be some well-known number.

Problem 7.2. Extending the moduli of derivatives of all contractions ¢p(z) = bj%w
{m + ni : (m,n) € IN x Z}, introduced at the very begining of the Section 6, to uni-
formly bounded holomorphic functions defined on an open neighbourhood of B(1/2,1/2)
in @2 and applying the Montel theorem we conclude that the Radon-Nikodym derivative
dm* /dm, the Gauss measure for complex continued fractions, is a real analytic function
on B(1/2.1/2). What is its precise form?

Problem 7.3. Is it always true that if m is the conformal measure, then HD(m) =
HD(J)?

Problem 7.4. Let S = {¢; : X — X :i € I} be a regular conformal i.f.s.. For every
Borel set A € J put 07" (A) = J,c; #i(A). We call a Borel probability measure v on .J
shift-invariant if v(c~1(A) = v(A) for all Borel subsets A of .J. We call it ergodic if all the
sets satisfying 07 1(A) = A) have either v measure 0 or 1. Is it true that m* is the only
shift-invariant ergodic measure with HD(m*) = HD(J)?

Problem 7.5. If the open set condition for a c.i.f.s. S holds, then does the strong
open set condition hold? At least, can one prove the results proven with the assumption
that SOSC holds (Lemma 4.3 for example) assuming only OSC?

Problem 7.6. Does there exist a regular c.i.f.s. S such that either measure Hy(J) or
I1,(J) is either zero or infinity for every gauge function g of the form t"L(t), where L(t)

is a slowly varying function?

Problem 7.7. Can one drop in Theorem 4.16 the assumption that L(t) is a slowly
varying function?

44



Appendix

In this section we provide the reader with some results which are slightly aside of our
flow of exposition and as well we outline an alternative approach for some topics contained
in Section 3.

We call a Borel probability measure v on J invariant if )}, ; vo¢; = v. From this point
on, we assume m is a d-conformal measure. We indicate a direct derivation of the measure
m™. This method makes no use of the abstract symbol space and is constructive-no use is
made of Banach limits as in Section 3.

Lemma a.l. If there exists a Borel measurable function p : J — (0,00) such that
Lp=p and [ pdp =1, then the probability measure v = pm is invariant and equivalent
to m, whence equal to m*.

Proof. The equivalency of v and m is obvious. In order to prove invariancy of v
notice that if A C J is a Borel set, then

S v o di(A) Z/ pam =3 [ pobiltifdm - /Zpo@wolm

icl el bi(A) el

:/Epdm:/pdm:V(A
A A

The proof is finished. |

Remark a.2. Employing methods similar to those of Section 3 such a measure v can
be proven to be ergodic and unique, but again no use of the shift representation of J is
required.

Lemma a.3. For all z € X, let p(z) = lim, oL ) and p(x) = lim, ,  L"1(z).

(z) = "1z
Then K=° < p(z) < p(z) < K°, Lp(z) < p(z) and Lp(z) > p(x), for every z € X.

Proof. Inequalities K% < p(z) < p(z) < K? are obvious. In order to prove that

Lp(x) > p(x), fix e > 0 and take a finite subset Iy of I such that Y-, ||¢}[|° < e, where
I, = I'\ I;. Since I is finite, there exists k¥ > 1 such that p(¢;(x)) > L"1(¢;(x)) — ¢
for all ¢ € I; and all n > k. By the definition of p(x), there exists ¢ > k such that
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L9111 (x) > p(x) — e. Therefore, we get

Lo(x) =Y p(¢i(@)|di (@) + Y (i) ()|’

i€l 1€l
> p(di@))di(@)’ = Y (L1 (gil)) — )i (@)
(ASy 1€y
= L(i(x —e> |¢i(x
(ASy (ASy
= L9 (z) = Y L9(¢i(2))|¢i(2) ] — e Y |l(
iEIg i€ly
> L9 (z) — — K% >p(x) —e — 2K’

=p(z) - (1+2K‘5)

So, letting € — 0 we get Lp(z) > p(x). The proof that Lp(z) < p(x) is similar. [

Lemma a.4. For every x € X, the limits po(z) = limp 00 Lp(x) and p_ (z) =
limy, 00 L7 p() exist. Moreover Lpy,(x) = Poo(x) and Lp_(x) = p_ () for all x € X.

Proof. Since L is a positive operator, it is monotone, and therefore, it follows from
Lemma a.3 that the sequence {L"p(x) : n > 0} is non-increasing and bounded from below
by K29, Thus, it is convergent and denote its limit by P (x). Since P = L"p for every
n > 1, we get Ep < £”+1p and therefore £p <p - In order to prove that £p >p

fix x € X and € > 0. Take a finite subset [1 of I such that >, [|¢f]|° < e, Where
I = I\ I . Since I is finite and since all sequences {L"p(z) : n > 0}, z € X, converge,
there is n > 0 such that p_(¢;(z)) > L"p(¢i(x)) — €, for all ¢ € I;. We then have

> o (Bi(@)di(@)° > D (L p(i(w)) — €) |} ()]°

i€l i€l
>3 L7p(i(@)|¢5(x) | — Ko = L™ p(x) = Y L7 p(i(w))|)(x)|° — K¢
i€l i€l

>p_(2) — K% — K’ =p_(2) — 2K’

So, letting ¢ — 0 we get the required inequality. The case of the function p_, can be dealt
with similarly. [ |

The following corollary is an immediate consequence of Lemma a.4, Lemma a.1 and
Remark a.2 following it or Theorem 3.8.

Corollary a.5. For m-a.e. x € J, we have p_ (z) = p(x) and p,.(z) = p(z).

Next, we obtain a sufficient condition for the measurer to have a continuous Radon-
Nikodym derivative with respect to m.

Lemma a.6. Fix a compact set X CY C V. If there exists ¢ > 1 such that the family
of functions {log |p,,||s,(v): T € I, w € I*°} is equicontinuous, then for every continuous
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function f 'Y — R, the family {L"(f) : Y — R : n > 1} is equicontinuous, i.e. the
Perron-Frobenius operator L : C(Y) — C(Y) is almost periodic. In this case, there is a
continuous function p: J — (0,00) such that Lp=p and [ pdp=1.

Proof. First note that in view of (3.3) there exists a finite set I{ C I? such that
writing I3 = I?7\ I{ we have ZveI;‘ ||¢fy||6 < €. Now, it is of course enough to prove that
the family {£"(f):Y — R :n > ¢} is equicontinuous. So, fix ¢ > 0. Take v > 0 so small
that |f(y) — f(z)] < e and ZveIf ||¢’7(y)|6 _ |¢’7(3;)|6| <eifly—z| <7, z,y €Y, and
moreover |log(|¢(, (y)]) —log(|¢},(z))| < e if |y —z| <7, z,y €Y, and |w| > ¢.

Take now z,y € Y with |y — 2| < n. Then by (3.3)

1L f(y) = L f ()] =
= > (1L W fF(Pu(®)) — |60, (2)° f(u(2)))

<O LWL (b0 @) = F(Bu(@D+ D 1 (bu@)6Lw)I° = ¢, (@)]°]
(a.1) <K%+ |Iflle > N6LWI° = |60 (2)]°]

weln

In order to estimate the last summand in the display above observe that

D LW’ — gL (@] =

= ST ST () P18, (0)1° — 16 (b (@)1 (2)1°])
< SN (8L ()P, (1)1 — 18 (x)) [+
+ 16, (asn( >>|6||¢' (bn@))° = |6 (b (@) °))
< Y X G (6,1 - 161+
+ 6116, 12| 211° o (16 (dy () ]) — Tog (166, (n(2))])])
(a.2) < 3 ST (LGP W) — |6 (2))°]) + 6K e

Let us estimate the first summand in the last line of this display. We have

DD IR ACH NIRRT

TeIn—aqnel]l
> D le2lenl°

T€In~ 4 nel]
(a.3) < 2K°¢
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and

DD ACHNIKI NI

Teln—danel]

< >0 NG Y NI — 1oy ()]

T€In—q nell
(a.4) < K’

Thus combining (a.1)-(a.4) we get [L"f(y) — L f(x)| < K°(1 + ||f]|oo(3 + 6K?))e which
finishes the proof. [

Remark a.7. We would like to remark that if the family {£L"(f) : X - R:n > 1}
is equicontinuous, in particular if the assumptions of condition (c) of Lemma 2.2, corre-
sponding to condition (iii), p.125, in [38], are satisfied, or even weaker if the assumptions
of Lemma a.6 are satisfied, then using similar arguments as in the proof of Theorem 8 of
[38], one can show that there exists a unique continuous function g : X — (0, c0) such that
L(g) = g on X. Suppose that g is normalized so that [ gdm = 1. Then g restricted to
the limit set J is a version of the Radon-Nikodym derivative dm* /dm. Moreover for every
continuous function f: X — R,

£(5) g [ fim

uniformly on X. Also some additional ergodic properties of the system (o, m*), for example
the weak Bernoulli property, can be proven as in [38].
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