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Abstract� The Hausdor� and packing measures and dimensions of the limit sets of it�
erated function systems generated by countable families of conformal contractions are
investigated� Conformal measures for such systems� reecting geometric properties of the
limit set� are introduced� proven to exist� and to be unique� The existence of a unique
invariant probability equivalent to the conformal measure is derived� Our methods employ
the concepts of the Perron�Frobenius operator� symbolic dynamics on an in�nite dimen�
sional shift space� and the properties of the above mentioned ergodic invariant measure�
A formula for the Hausdor� dimension of the limit set in terms of the pressure function
is derived� Fractal phenomena not exhibited by �nite systems are shown to appear in the
in�nite case� In particular a variety of conditions are provided for Hausdor� and packing
measures to be positive or �nite� and a number of examples are described showing the
appearance of various possible combinations for these quantities� One example given spe�
cial attention is the limit set associated to the complex continued fraction expansion � in
particular lower and upper estimates for its Hausdor� dimension are given� A large natural
class of systems whose limit sets are �dimensionless in the restricted sense� is described�
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Introduction

The concept of an iterated function system arises in two natural contexts� One is as a
generalization of the process of looking at backward trajectories of a continuous map of a
metric space� The second is as a geometric recursion generating a fractal set� It has turned
out to be of importance for describing complexity of objects arising in systems directly
modeling physical processes�

With any �nite iterated function system is associated its limit set J � the fractal coded
by this system� The qualitative metric structure of this set� expressed mainly as the equal�
ity of the three basic dimensions �Hausdor�� box� and packing� has been clari�ed beginning
with the works of Moran �
�� and Hutchinson �
�� assuming that the generating mappings
of the underlying systems are similarities� One can infer from �
�� that the Hausdor� and
packing measures coincide up to a multiplicative constant� and are positive and �nite�
More subtle achievements� focused for example around the problem of multifractal decom�
position or around the meaning of several separation conditions have been then obtained
�see ������
In the meantime a need to explore iterated function systems with an in�nite set of gener�
ators consisting of conformal maps rather than simply similarities has arisen from both of
these contexts �see �
�� �	�� �

�� and �
�� for example��

The main aim of this paper is to provide methods appropriate to deal with the case
when the number of generators is not assumed to be �nite nor the generators are required
to be linear � merely conformal� After de�ning the limit set J � we then prove that an
analog of the Moran�Bowen formula� identifying its Hausdor� dimension as the zero of
the pressure function� continues to hold in our case in a slightly modi�ed form� Namely�
instead of the zero of the pressure function P�t�� we take the in�mum of all arguments
t � � for which P�t� is negative� This modi�cation is important and in Section 	 examples
are given �cf� Ex�	�� and 	��� of systems such that P�t� is always either in�nite or negative
�the phenomenon� �rst observed in �
��� cannot happen in the �nite case� and in this
case� the corresponding limit sets are �dimensionless in the restricted sense�� there is no
Hausdor� gauge function of the form g�t� � t�L�t�� where L is slowing varying such that
the corresponding Hausdor� measure gives J positive �nite measure� The property that
P�t� has some �nite nonnegative value turns out to be a necessary and su�cient condition
for the existence of a semiconformal measure� that is a �xed point of the associated Perron�
Frobenius operator� �Indeed� the iteration of in�nitely many similarity maps� �i with
reduction ratios ri is a special deterministic case of �
��� The results of �
�� show that there
is a t�conformal measure m or self�similar measure m satisfying m �

P�
i	� r

t
im��

��
i if and

only if
P�

i	� r
t
i � 
�� The semiconformal measure is then proved to be conformal which is

the notion which links dynamical and geometrical features of a conformal iterated function
system and its behaviour governs the geometric measure theoretic properties of the limit
set� If it exists� the conformal measure is proven to be unique� We should also mention
that although semiconformality is merely an auxiliary notion� it can be de�ned even if
no separation condition is imposed� and in a number of our proofs the semiconformality
property is su�cient�

We would like to remark at this point that the concept of conformal measure was
�rst introduced by S� Patterson in ��
� for limit sets of Fuchsian groups and then extended
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by D� Sullivan �see ���� and ����� to the class of all Kleinian groups �i�e� discrete groups
of isometries of a hyperbolic space of arbitrary dimension� and rational functions of the
Riemann sphere� These three classes of systems� Kleinian groups� rational functions� and
conformal iterated function systems� although similar� are mutually distinct� Let us list
just a few prominent features di�erentiating them� Indeed� for both Kleinian groups �not
necessarily geometrically �nite� and rational functions a t�conformal measure always exists
�see again ���� and ����� whereas� as explained above� for conformal iterated function
systems this property may fail� Also� for a conformal iterated function system if a t�
conformal measure exists� then t is equal to the Hausdor� dimension of the corresponding
limit set and this measure is unique whereas for both Kleinian groups and rational functions
there are known examples �see �
��� ����� ���� allowing parameters t greater than Hausdor�
dimension admitting conformal measures�

There are however wide subclasses of Kleinian groups and rational functions almost
satisfying the requirements of conformal iterated function systems� so called convex co�
compact Kleinian groups and hyperbolic rational functions� Hyperbolic rational functions
admit �nite Markov partitions with exponentially contracting �inverse branches�� convex
cocompact Fuchsian groups� with an appropriate choice of generators� do the same� and all
convex cocompact Kleinian groups are by some experts believed to admit such partitions
too� A little problem appears here that the images of the elements of Markov partitions
may not be equal the whole limit set but the de�nition of iterated function systems could
be easily extended� for the price of some bigger technical complexity� to cover these cases�

On the other hand� the phenomenon of critical points� substantially complicating
the behaviour of rational functions does not seem to have any reasonable analog in the
class of Kleinian groups and conformal iterated function systems� However between the
class of hyperbolic rational functions and those with critical points in the Julia sets �the
common name for the limit set associated with a rational function� there is a class of
rational functions which are not hyperbolic but do not allow any critical point in the Julia
set� These maps� called parabolic maps� do not �t into formalism of conformal iterated
function systems but one can associate to any of these maps a so called jump map �see
�
�� �	��� originally considered by Schweiger in ���� in the context of maps of an interval�
which like hyperbolic maps� admits a Markov partition but consisting of in�nitely many
elements� This construction along with the complex continued fraction expansion system
was in fact our primary clue leading us toward in�nite iterated function systems�

Coming back to iterated function systems� in order to emphasize the di�erence between
the �nite and in�nite case we would like to point out that even if a conformal measure
exists� the Hausdor� measure may vanish� the packing measure may be in�nite and the
packing dimension �so also box dimension� can be larger than the Hausdor� dimension�


� Organization of paper

In Section � we formalize our notation and setting and also make some preliminary
observations� In Section � we introduce topological pressure� Perron�Frobenius operator�
and conformal and semiconformal measures� We de�ne and study here the class of regular
and hereditarily regular systems� and using a symbolic representation of the limit set we
prove the existence and uniqueness of the conformal measure� We also derive the existence
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of an invariant probability equivalent to the conformal measure� Proving its ergodicity we
simultaneously show its uniqueness� At the end of the section we give a proof that if the
system has �nite entropy� then the Hausdor� dimension of the conformal measure is equal
to the Hausdor� dimension of the limit set�

The next section� Section �� is partially motivated by what happens in the context
of Kleinian groups with cusps and parabolic rational functions �see ���� ������ It is also
partially motivated from the geometric recursion point of view for similarities� Even in the
random case �see �
��� �
��� there is a natural random measure on the random object� This
measure is the random �conformal� measure and for these systems the Hausdor� measure
is �nite�

We prove in this section that as in the case of Kleinian groups and parabolic rational
functions �even more� rational functions with no reccurent critical points in the Julia set
�see ������ Hausdor� measure is always �nite and packing measure is positive� Moreover�
we provide su�cient conditions for Hausdor� measure to vanish or to be positive and for
packing measure to be in�nite or �nite� These conditions are formulated in terms of the
boundary behaviour of our system and then in examples we show that all possibly allowed
combinations are realized� A similar situation has been observed for Kleinian groups and
parabolic rational functions �see ����� ���� and ���� for example� except that in this latter
case at least one� Hausdor� or packing measure is always positive and �nite� Notice also
that in view of Theorem ��
� if Hausdor� or packing measure is positive and �nite� then�
up to a multiplicative constant� it is equal to the conformal measure� Therefore the results
of this section can be also viewed as an attempt to understand the geometric nature of
conformal measures� And this process is not �nished yet� Since� although we would be
able to extract a fairly large class of gauge functions for which associated Hausdor� and
packing measures either vanish or are in�nite� we are not able to provide any example of a
system admitting a conformal measure whose limit set would be �totally dimensionless��
there is no Hausdor� gauge function such that the corresponding Hausdor� measure gives
the limit set positive �nite measure�

We also prove in this section an exponential decay of the Lebesgue measures of consec�
utive �levels� of our systems and provide an e�ective su�cient condition for the Hausdor�
dimension of the limit set to be stricly smaller than the dimension of the Euclidean space
containing it� At the end of the section we prove that the limit sets of irregular systems
are dimensionless�

Section 	 consists of several examples illustrating a wide variety of possible fractal
behaviour of limits sets� In particular Example 	�� gives evidence of how large the di�erence
can be between limit sets of in�nite systems and �nite systems and as well between limit sets
of in�nite iterated function systems� limit sets of geometrically �nite Kleinian groups and
Julia sets of parabolic rational functions� as in the two last cases the Hausdor� dimension
and box dimension are always equal �see ��� and ��
�� whereas for iterated function systems
even packing dimension can be bigger than Hausdor� dimension�

In Section �� we deal with our primary example � an iterated function system asso�
ciated to complex continued fraction expansions� From the results obtained in Sections �
and � we conclude that the Hausdor� dimension of corresponding limit set lies strictly
between 
 and �� obtaining in this way a more qualitative proof than that given in �

��
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We improve the quantitative approach worked out in �

� by using some properties of the
pressure function� Enjoying the power of modern computers� we show that this dimension
lies between the numbers 
����� and 
���

In Section �� we gather together several problems which remain unsolved� In the
appendix� we give a direct derivation of the ergodic probability measure equivalent to the
conformal measure� This derivation di�ers from the method used in Section � in that no
use of an abstract symbol space� Also� the measure is obtained in a constructive manner
as compared to the derivation given in Section � which uses Banach limits�

�� Preliminaries

Throughout the whole paper the symbols �d� Vd � �d�B��� 
��� and �d�� are reserved
to denote respectively the d�dimensional Lebesgue measure on Rd � the volume of the unit
ball B��� 
� � R

d � and the �d � 
��dimensional Lebesgue measure on the unit sphere
Sd�� � R

d �
Let �X� �� be a nonempty compact metric space� let I be a countable set with at least two
elements� and let S � f�i � X � X � i � Ig be a collection of injective contractions from
X to X for which there exists � � s � 
 such that

���
� ���i�x�� �i�y�� � s��x� y��

for every i � I and for every pair of points x� y � X� Any such collection S of contractions
is called an iterated function system� frequently abbreviated as i�f�s� Put I� �

S
n�� I

n

and for 	 � In� n � 
� set
�� � ��� � ��� � � � � � ��n �

If 	 � I� � I� and n � 
 does not exceed the length of 	� we denote by 	jn the word
	�	� � � � 	n� Observe now that given 	 � I�� the compact sets ��jn�X�� n � 
� are
decreasing and their diameters converge to zero� In fact� by ���
�

����� diam���jn�X�� � sndiam�X��

This implies that the set


�	� �
��
n	


��jn�X�

is a singleton and therefore this formula de�nes a map 
 � I� � X which� in view of �����
is continuous� Let � � I� � I� denote the left shift map �cutting out the �rst coordinate�
on I�� that is ��	� � 	�	� � � �� We will frequently use the following obvious relation

����� 
 � ��	� � ����� � 
�	��

The main object of our interest will be the set J � 
�I�� �
S
��I�

T�
n	� ��jn�X�� called

the limit set associated to the system S � f�i � X � X � i � Ig� Since �i�
�	�� � 
�i	�
for every i � I and rewriting ����� in the form 
�	� � ����
���	���� we see that

����� J �
�
i�I

�i�J��

	



Notice that if I is �nite� then J is compact� If the system S � f�i � X � X � i � Ig�
is pointwise �nite �meaning that each element of X belongs to at most �nitely many
elements of �i�X��� then the family f���X� � 	 � Ing is pointwise �nite for every n � 

and therefore

���	� J �
��
n	�

�
��In

���X��

Thus J is a F�� subset of X� In Section 	 we will discuss examples of in�nite i�f�s� whose
associated limit sets are not G� subsets of X� equivalently which do not admit a complete
metric� If the system S is not assumed to be pointwise �nite� then it seems that J may
even have much more complicated descriptive set theoretic structure� Let now X�	� be
the set of limit points of all sequences xi � �i�X�� i � I �� where I � ranges over all in�nite
subsets of I� As we shall see the geometric behavior of the system at this �asymptotic
boundary� directly a�ects the geometric properties of the limit set J �

We shall prove the following�

Lemma ���� If limi�I diam��i�X�� � �� then J � J �
S
��I� ���X�	���

Proof� First note that in view of ����� and the assumption� X�	� � J � Therefore
for every i � I we have �i�X�	�� � �i�J� � �i�J� � J � So� one inclusion is proved�
In order to prove the other one consider x � J � Then there exists a sequence 	n of
points in I� such that x � limn�� 
�	n�� If the set of �rst coordinates of points 	n is
in�nite� x � X�	� and we are done� Otherwise� there exists u� � I such that the set
N� � fn � 
 � 	n� � u�g is in�nite� If now the set of second coordinates of points 	n�
n � N�� is in�nite� x � �u��X�	�� and we are done again� Otherwise there exists u� � I
such that the set N� � fn � N� � 	

n
� � u�g is in�nite� So� if we can stop this procedure

after �nitely many� say n� steps� we are done� since then x � �u�u����un�X�	��� Otherwise�
using ����� we will produce a sequence u � I� such that dist�x� �ujn�X�� tends to zero
which implies that x � 
�u� � J �

An iterated function system S � f�i � X � X � i � Ig� is said to satisfy the Open
Set Condition �abbreviated �OSC�� if there exists a nonempty open set U � X �in the
topology of X� such that �i�U� � U for every i � I and �i�U� 
 �j�U� � � for every pair
i� j � I� i �� j�

An iterated function system S satisfying OSC� is said to be conformal �c�i�f�s�� if the
following conditions are satis�ed�
����� X is a compact connected subset of a euclidean space Rd and U � IntRd�X��

����� There exist �� l � � such that for every x � X � R
d there exists an open cone

Con�x� ux� �� l� � Int�X� with vertex x� direction vector ux� central angle of Lebesgue
measure �� and altitude l�

����� There exists an open connected set X � V � R
d such that all maps �i� i � I� extend

to C��� di�eomorphisms on V and are conformal on V �
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����� Bounded Distortion Property �BDP�� There exists K � 
 such that j����y�j �
Kj����x�j for every 	 � I� and every pair of points x� y � V � where j����x�j means the
norm of the derivative�

Let us comment on conditions ����� and ������ First� although condition ����� may
seem to be fairly sophisticated� in fact it is natural and it is satis�ed for example if X�
the boundary of X� is smooth enough or it is convex� It should be also noticed that in fact
the following weaker condition �see �
��� p� ���

inf
x��X

inf

	r	�

�d�B�x� r� 
 Int�X����d�B�x� r� � �

would be su�ciently strong for our aims� We will suppress the direction vector ux in our
notation for cones�

Now� to have a better understanding of what �BDP� actually says let us derive some of
its geometric consequences� Indeed� it follows from �BDP� and the mean value inequality
that

�BDP�
� diam����B�� � jj���jjdiam�B� and ���B�x� r�� � B����x�� jj�
�
�jjr�

for all 	 � I�� all convex subsets B of V � and all balls centered at points of X with
su�ciently small radii �� dist�X� V ��� The norm is the supremum norm taken over V �
However� by changing some constants we could take the norm over X� In order to get a
similar estimate for the whole set X it therefore su�ces to notice that X as a compact and
connected set can be covered by a �nite chain of balls fB�xj� rj� � 
 � j � qg �chain in
the sense that B�xj� rj� 
 B�xj��� rj��� �� � for all j � 
� �� � � � � q � 
� contained in V � In
fact� decreasing V to be the union of this chain �this operation preserves all the constraints
imposed so far on V � we can write

�BDP��� diam����V �� � Djj���jj�

where D � 
 is any number � qdiam�V �� In a moment� for other purposes� we may need
to take D bigger than qdiam�V ��

Take now x � X and � � r � dist�X� V �� Then B�x� r� � V � Take also any
	 � I� and let R � � be the maximal radius such that B����x�� R� � ���B�x� r��� Then

�
B����x�� R�

�

 
�
���B�x� r��

�
�� �� and in view of �BDP� we have ����

�
B����x�� R�

�
�

B�x� jj���� jjR� � B�x�Kjj���jj
��R�� Therefore Kjj���jj

��R � r� Hence we have proved
that

�BDP��� ���B�x� r��  B����x�� K
��jj���jjr�

for every x � X� � � r � dist�X� V �� and 	 � I�� Taking now � � dist�X� V � and
assuming D � K���� we can write

�BDP��� diam����X�� � D��jj���jj and ���X�  B����x�� D
��jj���jj�

�



for all 	 � I� and all x � X� Note also that the above formula remains true if X is
replaced by the limit set J � perhaps with a larger value of D� In the sequel� when we use
�BDP� we mean the original formula ����� and otherwise we will always indicate which one
of its geometrical consequences we are using by the label� Combining �BDP� and ����� we
conclude that if D � 
 is chosen large enough� then there exists � � � � � such that for
all x � X and for all 	 � I�

���
�� ���Int�X��  Con
�
���x�� ��D

��jj���jj
�
 Con

�
���x�� ��D

��diam�X�
�

where Con
�
���x�� ��D

��jj���jj
�
and Con

�
���x�� ��D

��diam�X�
�
denote some cones with

vertices at ���x�� angles �� and altitudes D
��jj���jj and D

��diam�X� respectively�

We feel also that a discussion about how to check condition ����� in practice would
be in order� and this is done in the next lemma and two remarks following it�

Lemma ���� Each of the following three conditions is su�cient for �BDP� to hold�

�a� There are two constants L � 
 and � � � such that��j��i�y�j � j��i�x�j�� � Ljj���i�
��jj��jy � xj��

for every i � I and every pair of points x� y � V �
�b� For every t � � let

M�t� � sup
i�I

supfjj���i�
��jj

��j��i�y�j � j��i�x�j�� � jy � xj � tg �	�

moreover the series ��t� ��
P

n�
M�s
nt� converges and limt�
 ��t� � ��

�c� The family flog j���j � 	 � I�g of functions de�ned on V is equicontinuous�

In fact we have the following chain of implications� �a�� �b�� �c���BDP��

Proof� ��a�� �b��� Indeed� for every t � � we have M�t� � Lt� and thereforeX
n�


M�snt� � Lt�
X
n�


s�n � Lt��
� s�����

where s is the bound on the contraction ratios given in ���
� � which �nishes the proof of
this implication�

��b� � �c��� Let 	 � I� and let n � j	j� For every z � V and every k � 
� �� � � � � n
de�ne zk � ��n�k�� � ��n�k�� � � � � � ��n�z�� put also z
 � z� Fix � � � and take � � � so
small that ���� � �� Take any two points x� y � V with jy � xj � �� Then

��log�j����y�j�� log�j����x�j��� �
������
nX
j	�

log

�

 �

j���j �yn�j�j � j�
�
�j
�xn�j�j

j���j �xn�j�j

�������
�

nX
j	�

jj����j �
��jj

��j���j �yn�j�j � j���j �xn�j�j��

�
nX
j	�

M�sn�j��� �
n��X
k	


M�sk�� � ��

�



��c���BDP��� In view of the equicontinuity� there is � � � such that if jy � xj � �� then��log�j����y�j�� log�j����x�j��� � 
 for all 	 � I�� Since X is compact and connected� there
is a �nite chain� say of cardinality n� of balls with radii ��� whose union� W � contains
X� Therefore if x and y are two arbitrary points in W � then there is a sequence fzi � i �

� � � � � kg�z� � y� zk � x� k � n � 
 of points in W such that jzi�� � zij � � for all i �


� � � � � k� 
� Hence
��log�j����y�j�� log�j����x�j��� �Pk��

i	�

��log�j����zi�j�� log�j����zi���j�
�� �

k � 
� Thus j����y�j�j�
�
��x�j � en� which with V shrunk to W �nishes the proof of this

implication and the whole lemma�

Remark ���� The assumption of Lemma ��� is obviously satis�ed if the alphabet I
is �nite and all the maps �i� i � I� belong to the class C���� So �BDP� holds in this case�

Remark ��	� Because of the Koebe distortion theorem �see ������ �BDP� is automat�
ically satis�ed if X is a subset of the plane�

From now on throughout the paper we will be actually interested only in conformal
systems� We begin to explore them by proving the following�

Lemma ��
� If S is an in�nite c�i�f�s�� thenX
i�I

jj��ijj
d � Kd and lim

i�I
diam��i�X�� � �

�

Proof� For each i � I denote by J
i the Jacobian of the contraction �i� By confor�
mality jJ
i j � j��ij

d� Thus by �OSC� and �BDP� we get

�d�Int�X�� �
X
i�I

�d�Int��i�X��� �
X
i�I

Z
IntX�

jJ
i j d�d �
X
i�I

K�djj��ijj
d�d�Int�X���

Hence
P

i�I jj�
�
ijj
d � Kd and therefore the lemma follows from ���
���

There are two cardinality bounds arising from our geometric condition ����� which play
a crucial role in our theory� To formulate them� for every x � X and every integer n � 
�
let 
��n �x� be the maximal collection of all mutually incomparable �meaning neither word
is an extension of the other� words	 in

S
j�n I

j with x � ���X� such that if 	� � � 
��n �x�
and � is an extension of 	� then � � 	� From ���
�� we immediately get the following�

Lemma ���� If S is a c�i�f�s�� then for every x � X and every integer n � 
� we have
�
��n �x� � �d���S

d������ In particular� S is uniformly pointwise �nite� More precisely
supx�X �fi � I � x � �i�X�g � �d���S

d����� �	�

Formula ���
�� also implies the following�

Lemma ���� If S is a c�i�f�s�� then for every x � X and every r � �� the cardinality
of any collection of mutually incomparable words 	 � I� satisfying B�x� r� 
 ���X� �� �
and diam����X�� � r is bounded from above by the number VdD

�d����
 �D����

�



Proof� Let F be such a family� It follows from ���
�� that

���X�  Con����x��� ��D
��r� � B�x� �
 �D���r�

for all 	 � F � where ���x�� is on the boundary of ���X� 
 B�x� r�� Hence the cones
Con����x��� ��D

��r�� 	 � F � are mutually disjoint and therefore Vd�
 � D���rd �
�d�B�x� �
 � D���r�� �

P
��F �d

�
Con����x��� ��D

��r�
�
� �F��D��r�d� Now� the re�

quired estimate follows�

Let us remark here that that in�nite c�i�f�s are not necessarily uniformly locally �nite�
Several examples �e�g�� Example 	�
� given in Section 	 are not even locally �nite� Some
of them however are and the complex continued fraction example described in Section � is
uniformly locally �nite�

In all following sections we will extensively use the concepts of conformal and semi�
conformal measures� The de�nition of semiconformal measures is somewhat technical and
is postponed to the next section� The de�nition of conformal measures is simpler� more
important� and will be provided here� So� given t � � a Borel probability measure m is
said to be tconformal provided m�J� � 
 and for every Borel set A � X and every i � I

���

� m��i�A�� �

Z
A

j��ij
t dm

and

���
�� m��i�X� 
 �j�X�� � ��

for every pair i� j � I� i �� j� Then an easy computation shows that for every Borel set
A � X and every 	 � I�

���
�� m����A�� �

Z
A

j���j
t dm

and

���
�� m����X� 
 �� �X�� � ��

for every pair 	� � � I� of incomparable �neither word is an extension of the other� words�
As an immediate consequence of this de�nition and �BDP� we get the following� if m is
��conformal� then

���
	� 
 �
X
��In

j���j
� � K��

Let us conclude this section with some general facts from geometric measure theory� Given
a subset A of a compact metric space �X� d�� a countable family fB�xi� ri�g

�
i	� of open

balls centered at points of A is said to be a packing of A if and only if for any pair i �� j

d�xi� xj� � ri � rj �


�



Given a nondecreasing function g � ��� ��� ���	� for some � � �� the g�dimensional outer
Hausdor� measure Hg�A� of the set A is de�ned as

Hg�A� � sup
��


inf
	 �X
i	�

g
�
diam�Ai�

�

�

where the in�mum is taken over all countable covers fAi � i � 
g of A by arbitrary sets
whose diameters do not exceed �� If g is of the form xt instead of writing Hxt we write
Ht and speak about t�dimensional outer Hausdor� measure� In this case one will get
comparable numbers �in the sense that ratios are bounded away from zero and in�nity� if
instead of covering A by arbitrary sets one considers only open balls centered at points of
A�

The g�dimensional outer packing measure  g�A� of the set A is de�ned as

 g�A� � inf
	Ai	A

	X
i

 �g�Ai�



�Ai are arbitrary subsets of A�� where  
�
g� the g�packing premeasure is given by�

 �g�A� � inf
��


sup
	 �X
i	�

g��ri�


�

Here the supremum is taken over all packings fB�xi� ri�g
�
i	� of the set A by open balls

centered at points of A with radii which do not exceed �� Similarly as in the case of
Hausdor� measures if g is of the form xt instead of writting  xt we write  t and speak
about t�dimensional outer packing measure� These two outer measures Hg and  g de�ne
countable additive measures on Borel ��algebra of X� For additional properties of packing
measures and a comprehensive discussion of this and related notions the reader is referred
to the paper ��	��

The de�nitions of the Hausdor� dimension HD�A� of A and packing dimension PD�A�
are the following

HD�A� � infft � Ht�A� � �g � supft � Ht�A� �	g

and
PD�A� � infft �  t�A� � �g � supft �  t�A� �	g�

Moreover we shall deal with lower box dimension BD�A� and upper box dimension BD�A�
which are respectively de�ned as follows�

BD�A� � lim inf
r�


logN�A� r�

� log r
and BD�A� � lim sup

r�


logN�A� r�

� log r
�

where N�A� r� is the minimal number of balls with radii � r needed to cover A� If the lower
and upper box dimensions coincide� then their common value BD�A� � BD�A� � BD�A� is







called the box dimension of A� In the literature all box dimensions are also called� perhaps
more properly� box counting dimensions� we will keep here the shorter name� We recall
�see ��� for example� that HD�A� � PD�A� � BD�A� and HD�A� � BD�A� � BD�A� �
BD�A� � BD�A��

Let � be a Borel probability measure on X and let t � � be a real number� De�ne
the function � � �t��� � X � ���	�� ���	� by

��x� r� �
��B�x� r��

rt
�

The following two theorems are for our aims the key facts from geometric measure theory�
The proof of the �rst one follows from the results obtained in ��	� and the proof of the
second one is contained in ��	�� Proofs may be found in �MAT��

Theorem ���� Assume that X is a compact subspace of a d	dimensional euclidean
space� Then for every t � � there exist constants h��t� and h��t� with the following
properties� If A is a Borel subset of X and C � � is a constant such that
�
� for all �but countably many� x � A

lim sup
r�


��x� r� � C���

then for every Borel subset E � A we have Ht�E� � h��t�C��E� and� in particular�
Ht�A� �	�
or

��� for all x � A
lim sup
r�


��x� r� � C���

then for every Borel subset E � A we have Ht�E� � Ch��t���E��

Theorem ���� Assume that X is a compact subspace of an d	dimensional euclidean
space� Then there exist constants p��t� and p��t� with the following properties� If A is a
Borel subset of X and C � � is a constant such that
�
� for all x � A

lim inf
r�


��x� r� � C���

then for every Borel subset E � A we have  t�E� � Cp��t���E��
or

��� for all x � A
lim inf
r�


��x� r� � C���

then for every Borel subset E � A we have  t�E� � p��t�C��E� and� consequently�
 t�A� �	�

�
�� If � is non�atomic� then �
� holds under the weaker assumption that the hypothesis of
part �
� is satis�ed on the complement of a countable set�


�



�� Pressure� measures� and dimensions

In this section we introduce topological pressure� Perron�Frobenius operator� and con�
formal and semiconformal measures� We de�ne and study here the class of regular and
hereditarily regular systems� and using a symbolic representation of the limit set we prove
the existence and uniqueness of the conformal measure� We also derive the existence of
an invariant probability equivalent to the conformal measure� Proving its ergodicity we
simultaneously show its uniqueness� At the end of the section we give a proof that if the
system has �nite entropy� then the Hausdor� dimension of the conformal measure is equal
to the Hausdor� dimension of the limit set�

Let us begin this section with the following mutual equality of all box and packing
dimensions of the limit set J and its closure J for iterated function systems�

Theorem ���� If S is an i�f�s� and all maps �i are bi	Lipschitz� then PD�J� �
BD�J� � PD�J� � BD�J��

Proof� The inequalities PD�J� � PD�J� � BD�J� and PD�J� � BD�J� � BD�J�
are obvious� Thus to complete the proof it su�ces to show that PD�J� � BD�J�� Indeed�
�x t � BD�J� and consider an arbitrary countable cover fYn � n � 
g of J � Since
the metric space I� is complete� there exists q � 
 such that 
���Yq� has nonempty
interior in I�� Therefore there exists an 	 � I� such that f	g � I� � 
���Yq�� whence
���J� � 
�f	g � I�� � Yq� Since t � BD�J�� we have  �t �J� � 	� Since �� is bi�
Lipschitz� we therefore �nd  �t �Yq� �  �t ����Yq�� � 	� Thus

P
n�� 

�
t �Yn� � 	 and

consequently  t�J� �	 which completes the proof�

In Example 	�� we show that the inequality HD�J� � PD�J� can occur even in
conformal systems� Now let us pass to study conformal systems� Until Lemma ��
�� unless
otherwise stated� we do not assume that �OSC� and ����� hold� For every t � � consider
the series

��t� �
X
i�I

jj��ijj
t�

Let � � �S � infft � ��t� � 	g � � and let F �S� be the set of �niteness of �� so either
F �S� � ���	� or F �S� � ���	�� Some elementary properties of � are collected in the
following lemma�

Lemma ���� The function ��t� is nonincreasing� It is strictly decreasing on ���	��
and continuous and log convex on F �S�� Additionally� ��d� � Kd which implies that � � d�

This lemma is actually obvious� That � is log convex follows from an application
of H!older"s inequality� and the last assertion is included in Lemma ��	� Note that ����
may be in�nite as well as �nite � in Examples 	�� and 	�� we have ���� � 	� on the
other hand in Examples 	�	 and 	�� ���� � 	 and this is also the case for complex
continued fractions described in Section �� This dichotomy plays an important role in the
classi�cation of c�i�f�s into regular and irregular systems as explained in the last six results


�



of this section� Notice also that� as Example 	�� shows� � may be d� For every integer
n � 
 de�ne �n�t� �

P
��In jj�

�
�jj

t �so � � ���� By �BDP� for all integers k� n � 
 we
have K�t�k�t��n�t� � �k�n�t� � �k�t��n�t�� It follows from this that �n�t� � 	 for all
n � 
 if and only if �n�t� �	 for some n � 
 if and only if ��t� �	� An application of
H!older"s inequality shows that each function �n is log convex� These facts imply that the
following limit

P�t� � lim
n��




n
log�n�t� � lim

n��




n
log

X
��In

jj���jj
t

always exists and is �nite if and only if ��t� � 	� in particular infft � P�t� � 	g � �S�
Note also that in view of �BDP� for every x � V

P�t� � lim
n��




n
log

X
��In

j����x�j
t�

We call P�t� the topological pressure of the system S� For an exposition of the theory
of this notion in the context of dynamical systems acting on a compact metric space the
reader is referred to the books ���� and ���� by D� Ruelle and P� Walters respectively and
to the articles ���� and ���� for example� The following proposition collects some of basic
properties of topological pressure�

Proposition ���� infft � ��t� � 	g � �S� The topological pressure function P�t�
is nonincreasing on ���	�� strictly decreasing on ���	�� convex and continuous on F �S��
Additionally P��� �	 if and only if I is in�nite�

Proof� The �rst statement of this proposition has been proved above� The facts that
the pressure function P�t� is nonincreasing on ���	� and is strictly decreasing on ���	�
are obvious� Since P is the limit of convex functions on F �S�� P is convex on F �S�� This
in turn implies that P�t� is continuous on F �S��

Now we shall study semiconformal and conformal measures� First without assuming
�OSC� and ������ we de�ne semiconformal measures and prove some of their basic prop�
erties� Next� assuming �OSC� and ������ we prove the existence of conformal measures
and establish some geometric properties of conformal systems� Our way of dealing with
semiconformal measures is motivated by the approach given in ���� where a more complete
collection of references can be found�

Suppose that � � F �S� and for every bounded function f � X � R put

L��f��x� �
X
i�I

j��i�x�j
�f��i�x���

Notice that L� preserves the space of continuous functions C�X� and that its norm is
bounded by ����� so it is continuous� Denote by L�� � C�X�

� � C�X�� its dual operator�
We shall prove the following�

Lemma ��	� If t � � and m is a t	conformal measure� then t � F �S� �even more�
P�t� � �� and L�t �m� � m�


�



Proof� It follows immediately from ���
	� that t � F �S� and P�t� � �� More�
over for each f � C�X� we have L�tm�f� �

R
Lt�f� dm �

R P
i�I j�

�
ij
t�f � �i� dm �P

i�I

R

iX� f dm �

RS

iX� f dm �

R
f dm � m�f�� The proof is �nished�

This lemma gives us the �rst motivation to distinguish probability measures that are
�xed points of the dual operator L�� and to name them �semiconformal measures� An�
other reason is� as we have already mentioned� that ��semiconformal measures are proven
to exist even if �OSC� is not satis�ed and a conformal measure may fail to exist� Moreover�
the semiconformal themselves carry interesting geometric and dynamic information� So�
our next aim is to show the existence of semiconformal measures� Frequently� if it does
not lead to a misunderstanding we will drop the subscript � and simply write L and L�

for L� and L�� respectively� We begin with the following�

Theorem ��
� A �	semiconformal measure exists if and only if P��� � �� Moreover�
if m is �	semiconformal� then m�J� � 
�

Proof� Suppose �rst that a ��semiconformal measure exists� Call it m� Then for
every n � 
 we have 
 �

R

 dm �

R
Ln�
� dm �

R P
i�In j�

�
�j
� dm and using �BDP� we

conclude that 
 �
P

i�In jj�
�
�jj

� � K�� Hence P��� � � which �nishes the �rst part of the
proof�

Now suppose that P��� � �� Consider the continuous map � � L�����L�����
�
de�ned on the space of Borel probability measures on X treated as a subspace of C�X���
In view of Schauder�Tichonov theorem this map has a �xed point� say m� Writing � �
L��m��
� we thus have L��m� � �m� We shall now show that � � 
� Indeed� since
Ln�f��x� �

P
��In j�

�
��x�j

�f����x�� for all n � 
� we get �L
��n�m� � �nm which implies

that
R P

��In j�
�
�j
� dm � �n

R

 dm � �n� On the other hand since P��� � �� using �BDP�

we conclude that for every � � �� every n � 
 large enough and every x � X we have
e��n �

P
��In j�

�
��x�j

� � e�n and consequently e��n � �n � e�n� Thus � � 
� so m is a
�xed point of L��

Now� suppose m is ��semiconformal or equivalently�

���
�

Z X
��In

j���j
��f � ��� dm �

Z
f dm�

for every continuous function f � X � R� Since this equality extends to all bounded
measurable functions f � we get

����� m����A�� �
X
��In

Z
j��� j

��

�A� � �� � dm �

Z
A

j���j
� dm

for all 	 � In and all Borel subsets A of X� Now for each n � 
 set Xn �
S
��In ���X��

Then 
Xn
��� � 
 for all 	 � In� Thus applying ���
� to the function f � 
Xn

and later to
the function f � 
 we obtainm�Xn� �

R P
��In j�

�
�j
��
Xn

���� dm �
R P

��In j�
�
�j
� dm �R


 dm � 
� Hence� m�J� � m
�T

n��Xn

�
� 
� The proof is �nished�


	



Observe that slightly more generally� if t � F �S�� then the same proof leads to the
existence of a probability measure mt on J such that L��mt� � ePt�mt�
For the remainder of the section we assume that P��� � � and m is a ��semiconformal
measure� Frequently to stress its importance we will repeat this assumption in the for�
mulations of our results� Let us also make some additional notation� If 	 � I�� set
�	� � f� � I� � � jj�j � 	g� We shall prove the following�

Lemma ���� There exists a unique Borel probability measure � on I� such that
���	�� �

R
j���j

� dm for all 	 � I��

Proof� In view of ���
��
P

��In

R
j���j

� dm � 
 for all n � 
 and therefore one can
de�ne a Borel probability measure �n on Cn� the algebra generated by the cylinder sets of
the form �	�� where 	 � In� by putting �n��	�� �

R
j���j

� dm� Hence applying ���
� again
we get for all 	 � In

�n����	�� �
X
i�I

�n����	i�� �
X
i�I

Z
j���ij

� dm �

Z X
i�I

�j���j � �i�
�j��ij

� dm

�

Z
j���j

� dm � �n��	���

and therefore� in view of Kolmogorov"s extension theorem there exists a unique probability
measure � on I� such that ���	�� � �j�j��	�� for all 	 � I��

As an immediate corollary of this lemma and �BDP� we see that if R � I� is a
collection of incomparable words such that

S
��R ���X�  J � then

����� 
 �
X
��R

jj���jj
� � K��

Now we shall prove the following�

Lemma ���� The measures m and � � 
�� are equal�

Proof� Let A � J be an arbitrary closed subset of J and for every n � 
 let
An � f	 � In � ���X�
A �� �g� In view of ���
� applied to the characteristic function 
A
we have for all n � 


m�A� �
X
��In

Z
j����x�j

��
A � ��� dm �
X
��An

Z
j����x�j

��
A � ��� dm

�
X
��An

Z
j����x�j

� dm �
X
��An

���	�� � �
� �
��An

�	�
�

Since the family of sets f
S
��An

�	� � n � 
g is decreasing and� by Lemma ���� the cardi�

nality of the sets An are uniformly bounded and
T
n��

S
��An

�	� � 
���A�� we therefore

get m�A� � limn�� �
�S

��An
�	�
�
� ��
���A��� Since both measures m and � � 
�� are


�



regular �as J is a metric separable space�� this inequality extends to the family of all Borel
subsets of J � Since both measures are probabilistic we get m � � � 
��� The proof is
�nished�

Let us recall that in the beginning of Section � by � � I� � I� we have denoted the
left shift map �cutting out the �rst coordinate� on I�� Now we shall prove it has a unique
invariant �ergodic� probability measure equivalent with �� For the sake of completeness
we provide the reader with a complete proof although after noting that for all 	� �� � � I�

���	� ������� ��

���	����������
� K�

we could apply Renyi"s theorem �see ����� comp� ������

Theorem ���� There exists a unique ergodic �	invariant probability measure ��

absolutely continuous with respect to �� Moreover �� is equivalent with � and K�� �
d���d� � K��

Proof� Let L be a Banach limit de�ned on the Banach space of all bounded sequences
of real numbers� Straightforward computations and an application of Kolmogorov"s exten�
sion theorem show that the function ����	�� � L

�
�����n��	����n�


�
de�ned on I�� extends

to a ��invariant probability measure on I�� Keep for it the same symbol ��� Notice that�
using ������ for each 	 � I� and each n � � we have

����n��	��� �
X
��In

����	�� �
X
��In

Z
j����j

� dm �
X
��In

K��jj��� jj
�

Z
j���j

� dm

� K��

Z
j���j

� dm
X
��In

jj��� jj
� � K�����	����I�� � K�����	��

and

����n��	��� �
X
��In

����	�� �
X
��In

Z
j����j

� dm

�
X
��In

jj��� jj
�

Z
j���j

� dm �

Z
j���j

� dm
X
��In

jj��� jj
�

� K����	���

Therefore� K�����	�� � ����	�� � K����	�� and these inequalities extend to all Borel
subsets of I�� Thus� to complete the proof of our theorem we only need to show the
ergodicity of �� or equivalently of �� Toward this end take a Borel set A � I� with
��A� � �� Since the nested family of sets f�� � � � � I�g generates the Borel �� algebra on
I�� for every n � � and every 	 � In we can �nd a subfamily Z of I� consisting of mutually
incomparable words and such that A �

S
f�� � � � � Zg and

P
��Z ���	� �� � ���	A�� where


�



	A � f	� � � � Ag� Then

�
�
��n�A� 
 �	�

�
� ��	A� �




�

X
��Z

���	� �� �



�

X
��Z

Z
j���� j

� dm

�



�
K��jj���jj

�
X
��Z

Z
j��� j

� dm �



�
K��

Z
j���j

� dm
X
��Z

���� ��

�



�
K�����	���

��
f�� � � � � Zg

�
�



�
K����A����	��������

Therefore �
�
��n�I� n A� 
 �	�

�
� �

�
�	� n ��n�A� 
 �	�

�
� ���	�� � �

�
��n�A� 
 �	�

�
��


 � ��K������A�
�
���	��� Hence for every Borel set A � I� with ��A� � 
� for every

n � �� and for every 	 � In we get

���	� ����n�A� 
 �	�
�
�
�

� ��K�����
� ��A��

�
���	���

In order to conclude the proof of ergodicity of � suppose that ����A� � A and � �
��A� � 
� Put � � 
 � ��K�����
 � ��A��� Note that � � � � 
� In view of ���	��
for every 	 � I� we get ��A 
 �	�� � ����j�j�A� 
 �	�

�
� ����	��� Take now � � 
 so

small that �� � 
 and choose a subfamily R of I� consisting of mutually incomparable
words and such that A �

S
f�	� � 	 � Rg and �

�S
f�	� � 	 � Rg

�
� ���A�� Then

��A� �
P

��R ��A 
 �	�� �
P

��R ����	�� � ��
�S
f�	� � 	 � Rg

�
� ����A� � ��A�� This

contradiction �nishes the proof�

Theorem ���� There exists exactly one �	semiconformal measure�

Proof� Since m is ��semiconformal we are only left to prove its uniqueness� So�
let m� be another ��semiconformal measure and let �� be the probability measure pro�
duced in Lemma ��� applied to the measure m�� Then for every 	 � I� we have K�� �
����	������	�� � K�� whence �� and � are equivalent and the Radon�Nikodym derivative �
satis�esK�� � � � K�� We also have �����	��� �

R
j�����j

� dm and ���	�� �
R
j���j

� dm �R
j����������x��j

�j������x�j
� dm�x� and hence inffj�����x�j

� � x � �����X�g�����	��� �

���	�� � supfj�����x�j
� � x � �����X�g�����	���� Since �

�
�� is a continuous function on X�

we thus obtain that for every 	 � I�

����� lim
n��

�
�
�	jn�

�
�
�
���	�jn���

� � j�����
���	���j
�

and the same formula is true with � replaced by ��� In view of Theorem ���� there exists a
set of points 	 � I� with � measure 
 for which the Radon�Nikodym derivatives ��	� and
����	�� both are de�ned� Let 	 � I� be such a point� Then using ����� and its version
for ��� we obtain

��	� � lim
n��

�
��
�
�	jn�

�
�
�
�	jn�

�
�
� lim

n��

�
��
�
�	jn�

�
��
�
���	�jn���

� � ��
�
���	�jn���

�
�
�
���	�jn���

� � �
�
���	�jn���

�
�
�
�	jn�

�
�

� j�����
���	���j
�����	��j�����
���	���j

�� � ����	��


�



But since� in view of Theorem ���� � is ergodic with respect to �� we conclude that � is
��almost everywhere constant� Since �� and � are both probabilistic� �� � �� So� applying
Lemma ��� �nishes the proof�

Now� coming back to �OSC� and ����� we shall prove the existence �and uniqueness�
of conformal measures� In fact we shall show that every measure ful�lling slightly weaker
requirements than a semiconformal measure is conformal�

Lemma ����� A Borel probability measure � on X is �	conformal if and only if
P��� � � and �����A�� �

R
A
j���j

� d� for all 	 � I� and for all Borel subsets A of X�

Proof� That conformal measures satisfy the requirements appearing in this lemma
follows from their de�nition and Lemma ���� In order to prove the harder part �rst we
shall show that condition ���
�� is satis�ed� then that ��J� � 
� and �nally that ���

�
holds� So� in order to prove ���
�� suppose to the contrary that ����X� 
 �� �X�� � �
for some q � 
 and two distinct words �� � � Iq� Let E � ��X� 
 �� �X� and for every
n � 
 let En �

S
��In ���E�� Since each element of En admits at least two di�erent codes

of length n� q which agree on the initial segment of length n� it follows from Lemma ���
that

T�
k	�

S�
n	k En � �� On the other hand by ������ �BDP�� and Lemma ��� we get

��En� � ����d���S
d���K����E�� thus �

�T�
k	�

S�
n	k En

�
� ����d���S

d���K����E� � ��
This contradiction shows that

����� ����X� 
 �� �X�� � �

for all incomparable words �� � � I�� In order to show that ��J� � 
 suppose to the con�
trary that ��X n J� � �� In view of ����� for all 	 � I� we have �����X n J� 
 J� �
�
�S

��Ij�j ���X n J� 
 �� �J�
�
�
P

��Ij�j �����X n J� 
 �� �J�� � �� Hence setting

En �
S
��In ���X n J� we get �

�
J 


S
n��En

�
� �� On the other hand ��En� �

K����X n J� �because of ����� we can skip the factor ����d���S
d��� here� and therefore

�
�T�

k	�

S�
n	k En

�
� K����X n J� � �� Moreover

��
k	�

��
n	k

En �
��
k	�

� ��
n	k

�
��In

���X�
�
�

��
k	�

�
��Ik

���X� � J�

Combining the formulae occuring at the ends of the last three sentences we fall into a
contradiction which proves that ��J� � 
�

Now we need and we are in position to prove that the ��semiconformal measure m is
��conformal� Indeed� m satis�es all conditions placed in the right�hand side of Lemma ��
��
Moreover� using ������ ������ and Lemma ���� given an integer n � 
� we can write 
 �
m�X� � m

�S
��In ���X�

�
�
P

��In m����X�� �
P

��In

R
j���j

� dm � 
� Therefore

m����X�� �
R
j���j

� dm for all 	 � In� De�ne now two �nite measures m� and m� on X
in the following way� m��A� �

R
A
j���j

� dm and m��A� � m����A��� Since we know that
m��X� � m��X� and m��A� � m��A� for all Borel sets A� we conclude that m� � m��
Hence� conformality of m is proven�


�



Let us now return to the measure �� We shall show that m is absolutely continuous
with respect �� Indeed� it follows from conformality of m and �BDP� that K��jj���jj

� �
m����X�� � jj���jj

� for all 	 � I�� Since� by the assumptions� �����X�� � K��jj���jj
��

we therefore obtain m����X�� � K������X��� So� using ������ we conclude that m is
absolutely continuous with respect to � and � � dm�d� � K� ��a�e� Repeating essentially
the argument from the proof of Theorem ��� to show that � is almost everywhere constant�
we proceed as follows� In view of Lemma ��� and Theorem ��� there exists a set of points
	 � I� with �measure 
 for which the Radon�Nikodym derivatives ��
�	� and ��
���	��
both are de�ned� Let 	 � I� be such a point� Then

� � 
�	� � lim
n��

�
m���jn�X��

����jn�X��

�

� lim
n��

�
m���jn�X��

m�����jn��
�X��

�
m�����jn��

�X��

������jn��
�X��

�
������jn��

�X��

����jn�X��

�

� lim
n��


�
R

����jn��

X� j�
�
�j
� dm

m�����jn��
�X��

�
A � ��
���	��� � lim

n��


�
R

����jn��

X� j�
�
�j
� dm

m�����jn��
�X��

�
A

� j����
���	��j
���
���	���j����
���	��j

�� � ��
���	���

So� by the Birkho� ergodic theorem� � � 
�	� is m�a�e� constant and so is the Radon�
Nikodym derivative � � J � ���	�� Keep the same symbol � for this value� Since both
measures m and � are probabilistic� � � 
� In the proof of the previous theorem we
were done at this point concluding that � � 
 since �� and �� were equivalent� Here an
additional argument is needed� And indeed� if � � 
 m�almost everywhere� de�ne the set
Z � fx � J � ��x� � �g� Then ��Z� � 
� 
�� � �� We claim that

����� ���J n Z� 
 ���Z�� � �

for all 	 � I�� Indeed� if ���J n Z� 
 ���Z�� � � for some 	 � I�� then m����Z�� �
m��J n Z� 
 ���Z�� � ���J n Z� 
 ���Z���� � � which by conformality of m implies
that m�Z� � �� This contradiction �nishes the proof of ������ But now it follows from
����� that the probability measure �jZ���Z� satis�es the assumptions of the right�hand
side of Lemma ��
�� hence from what has been proved we conclude that m is absolutely
continuous with respect to �jZ���Z�� This however contradicts the de�nition of the set Z
and �nishes the proof�

We would like to repeat here the following consequence of Lemma ��� which has been
used in the proof of Lemma ��
��

If � and � are two distinct words of the same length� E � ��X� 
 �� �X�� and
En �

S
��In ���E�� then lim supn��En � ��

As an immediate consequence of Lemma ��
�� Theorem ��	� and ����� we get the
following�

��



Corollary ����� Let m be a �	semiconformal measure� Then m is �	conformal� Also
m	almost every point x � J has a unique representation in the form x � 
�	�� 	 � I��
i�e�� the set 
���x� is a singleton�

Remark ����� Notice that the measure �� pulls down canonically to the limit set J
giving rise to the measure m� � �� � 
�� which is equivalent to m� Notice also that since
m�almost every point x � J has a unique representation in the form x � 
�	�� 	 � I�� the
formula T �x� � ����� �x� de�nes �

��a�e� a measurable map on J � Observe that T commutes
with the shift map � on I� via the invertible map 
 establishing a measurable isomorphism
between the systems ��� ��� on I� and �T�m�� on J � Frequently� in the sequel we will
simply identify these two systems� especially writing � also for T � Let us also remark that
in the appendix� we give a direct method of obtaining the measure m��

Let us now derive some geometric consequences of these results�

Lemma ����� A t	conformal measure exists if and only if P�t� � ��

Proof� The proof comes up as an immediate consequence of Lemma ���� Theorem ��	
and Corollary ��

�

For a c�i�f�s� S denote by h or by hS � the Hausdor� dimension HD�J� of the corre�
sponding limit set J � We call a c�i�f�s� S regular if it admits a t�conformal measure� or�
in view of Corollary ��

 and Lemma ��
�� equivalently if the equation P�t� � � has a
solution�

The following lemma has been proved in ���� For the sake of completeness we prove it
below giving a slightly di�erent proof which �ts better into our general approach�

Lemma ���	� If I is �nite� then the system fS � �i � i � Ig is regular and there
exists C � 
 such that

C�� �
m�B�x� r��

r�
� C

for all x � J and � � �r � diam�X�� where P��� � �� In particular� � � H��J�� ��J� �	
and � � h�

Proof� Our system is regular since � � P�t� � log��I� � 	� Since I is �nite� the
number � � inffjj��ijj � i � Ig is positive� Consider x � 
�	�� 	 � I�� � � �r � diam�X��
and let n � � be the smallest integer such that ��jn�X� � B�x� r�� Then by ����� and

�BDP�� m�B�x� r�� � K��jj���jn jj
�� From the minimality of n we conclude that ��jn��

�X�

is not contained in B�x� r�� Thus� by �BDP� and �BDP���� we get r � diam
�
��jn��

�X�
�
�

Djj���jn��
jj � DKjj���n jj

��jj���jn jj � DK���jj���jn jj� Therefore

m�B�x� r�� � �DK�������r��

�




Thus by Theorem ����
�� H��J� �	 and by Theorem �������  ��J� �	� Now let Z be the
family of all minimal �in the sense of length� words 	 � I� such that ���X�
B�x� r� �� �
and ���X� � B�x� �r�� Then diam���jj�j��

�X�� � r� Let R � f	jj�j�� � 	 � Zg�
Note that R is �nite and therefore we can �nd a �nite subfamily R� of R consisting of
mutually incomparable words such that each element of R is an extension of an element
from R�� Temporarily �x an element � � R� and take i � I such that �i � Z� Then �r �
diam���i�X�� � D��jj���ijj � D��K���jj��� jj��jj�

�
ijj� � D��K���diam��� �X��� Hence

diam��� �X�� � �KD����r and therefore
S
��R� �� �X� � B�x� �
 � �KD�����r�� On the

other hand� as r � diam��� �X�� � Djj��� jj� it follows from �BDP��� that �
�
�� �Int�X���

�
�

VdD
�djj��� jj

d � VdD
��drd� Therefore Vd�
��KD�����drd � �

�
B�x� �
��KD�����r�

�
�

�R�VdD
��drd� which implies that �R� � D�d�
 � �KD�����d By the de�nition of R��

we have 
��
�
B�x� r�

�
�
S
f�� � � � � R�g� Therefore� since jj��� jj � �DK���r� using

Lemma ���� we get

m
�
B�x� r�

�
� � � 
��

�
B�x� r�

�
�
X
��R�

���� �� �
X
��R�

jj��� jj
� �

X
��R�

��DK���r��

� �R������DK��r��

So� applying Theorem ������ and Theorem ����
� the proof is �nished�

Let � � infft � � � P�t� � �g and let Fin�I� denote the family of all �nite subsets of
I� We shall prove a characterization of HD�J� which is well�known for �nite systems and
which goes along the line continued in ���� ���� ���� �
	�� �
��� �
��� and others�

Theorem ���
� It holds HD�J� � � � supfhF � F � Fin�I�g � �� If P�t� � �� then
t is the only zero of the function P�t� and t � HD�J��

Proof� Take t � �� Then� using ���
��� for every integer n � 
 su�ciently large
we have

P
��In diam����X��

t � Dt
P

��In jj�
�
�jj

t � Dt exp�nP�t����� Since the family
���X�� 	 � In� is a cover of J and since its diameters converge to � as n�	� it follows
from the estimate obtained that Ht�J� � �� Thus HD�J� � �� Set now � � supfhF � F �
Fin�I�g and consider an arbitrary t � �� Then by Lemma ��
� and ����� for every n � 
�
we have X

��In

jj���jj
t � sup

T�FinI�

X
��Tn

jj���jj
t � sup

T
f
X
��Tn

jj���jj
hT snt�hT �g

� st���n sup
T
f
X
��Tn

jj���jj
hT g � st���n sup

T
KhT � st���nK��

Hence P�t� � �t � �� log s � � which gives t � � and consequently � � �� Obviously
� � HD�J�� and since we have proved that HD�J� � �� the proof of the �equality� part
of the theorem is completed� The inequality � � � follows immediately from de�nitions of
both numbers� Finally� the last statement of the theorem is true since P�t� is continuous
and strictly decreasing on ���	��

��



The following theorem establishes also a continuity property of a conformal system
with respect to its �nite subsystems�

Theorem ����� If S � f�i � i � Ig is a regular system� then limF�FinI�mF � mI

in the weak� topology on C�X��

Proof� Let � be an arbitrary accumulation point �in the weak� topology on C�X�� of
the sequence fmF � F � Fin�I�g� We are to show that � is h � hI conformal and in order
to achieve this we will prove that the assumptions of Lemma ��
� are satis�ed� Indeed�
P�h� � � since S is regular� Therefore we can use ������ for example to conclude that for
all n � 


����� lim
F�FinI�

X
��Fn

j���j
h �

X
��In

j���j
h

and the convergence is uniform with respect to F � Fin�I�� As� by Theorem ��
	� h �
supfhF � F � Fin�I�g� applying ���
� we get that for every continuous function f � X ��
R� every F � Fin�I�� and every n � 


Z
f dmF �

Z X
��Fn

j���j
hF �f � ��� dmF �

Z X
��Fn

j���j
h�f � ��� dmF

Thus� using ������ continuity of
P

��In j�
�
�j
h� and the de�nition of � we obtain

R
f d� �R P

��In j�
�
�j
h�f ���� d�� Now exactly as in the derivation of formula ������ we notice that

this inequality extends to all bounded measurable functions f � X � R� In particular it is
true with f � 

�A�� where 	 � I�� and A is any Borel subset of X� This gives �����A�� �R
A
j���j

� d� which �nishes checking the assumptions of Lemma ��
� and completes the
proof�

The following immediate consequence of Theorem ��
	 has been proved� even in the
random case� in �
���

Corollary ����� If S is a linear c�i�f�s�� then HD�J� is the in�mum of all t � � such
that

P
i�I jj�

�
ijj
t � 
�

Combining Lemma ��
�� Proposition ���� Theorem ���� and Theorem ��
	 we can
collect the essence of our results so far proven in this section in the following way�

Theorem �����
�a� If a t	semiconformal measure exists� then t � h�
�b� Each t	semiconformal measure is t	conformal�
�c� There exists at most one h	conformal �equivalently h	semiconformal� measure�
�d� The system S is regular if and only if P�h� � ��
�e� The system S is regular if and only if P�t� � � for some positive t�

��



Motivated by this theorem� from now on we will rather use the letter h instead of
� even when referring to theorems including � in their formulations explicitly� We call
a subsystem S� � f�i � i � I �g of the system S � f�i � i � Ig co�nite if I � � I and
the di�erence I n I � is �nite� Dealing with co�nite subsystems we will need the following
obvious lemma�

Lemma ����� The following conditions are equivalent�
�a� �S�t� �	�
�b� There exists a co�nite subsystem S� of S such that �S��t� �	�
�c� For every co�nite subsystem S� of S we have �S��t� �	�
�d� PS�t� �	�
�e� There exists a co�nite subsystem S� of S such that PS��t� �	�
�f� For every co�nite subsystem S� of S we have PS��t� �	�
In particular� �S � �S� for every co�nite subsystem S� of S�

We call a c�i�f�s� S hereditarily regular if its every co�nite subsystem is regular�

Theorem ����� An in�nite system S is hereditarily regular if and only if P��� �
	 � ���� � 	 � ft � P�t� � 	g � ���	� � ft � ��t� � 	g � ���	�� If S is
hereditarily regular� then h � ��

Proof� If ft � P�t� � 	g � ���	�� then S is hereditarily regular in view of
Lemma ��
�� Theorem ��
�� and Proposition ���� If ���� �	� then there exists a co�nite
subsystem S� of S such that �S���� � 
� whence PS���� � �� Therefore S� is not regular
in view of Theorem ��
�� Theorem ��
	 and Proposition ���� All other equivalences in�
volved in this theorem follow now from Lemma ��
�� Inequality h � � follows now from
Proposition ��� and Theorem ��
	�

If S is not regular we call it irregular� From Theorem ��
�� Theorem ��
	 and
Proposition ��� we get the following�

Theorem ����� S is irregular if and only if P�h� � �� P��� � ��

Theorem ����� If S is irregular� then every co�nite subsystem S� of S is irregular
and hS� � �S�

Proof� In view of Theorem ���
 hS � �S� In view of Lemma ��
� and Theorem ���

PS���S�� � PS���S� � PS��S� � � and therefore it follows from Theorem ���
 that S� is
irregular� Thus� using Lemma ��
�� hS� � �S� � �S �

Theorem ����� limT�FinI� hInT � infT�FinI� hInT � �S�

Proof� That limT�FinI� hInT � �S follows from Theorem ��
	 and Lemma ��
��
In order to prove the opposite inequality �x t � �S � Then �S�t� � 	� and therefore
there exists F � Fin�I� such that �InT �t� � 
 for every �nite subset T of I containing
F � Hence PInT �t� � � for every �nite subset T of I containing F which shows that
limT�FinI� hInT � t� The proof is �nished�

��



If the system S is �nite� then in view of Lemma ��
�� m is equivalent to the h�
dimensional Hausdor� measure on J � Since� as Example 	�	 shows �comp� also Example 	��
and Theorem ����� this generally is no longer true for in�nite systems� the natural question
arises of whether at least the Hausdor� dimension of m is equal to h� In order to give a
su�cient condition� we �nd it appropriate� although not necessary� to use the notion of
metric entropy to be found in ���� or ���� for example� We remark that since in our case the
partition f�i� � i � Ig generates the Borel ��algebra on I�� the metric entropy h���� of the
system ��� ��� is equal to infkf

��
k

P
��Ik �

���	�� log�����	���g and note that this number

is �nite if and only if
P

i�I �h log�jj�
�
ijj�jj�

�
ijj
h is �nite� We shall prove the following�

Theorem ���	� If the metric dynamical system ��� ��� has �nite entropy� equivalently
if the series

P
i�I �h log�jj�

�
ijj�jj�

�
ijj
h converges� then HD�m� � h�

Proof� Let m�E� � 
� Since the series
P

i�I �h log�jj�
�
ijj�jj�

�
ijj
h converges� invoking

������ we conclude that the function f � I� � R� f�	� � h log j����
���	��j� is integrable
with respect to the measure �� as well as� in view of Theorem ���� with respect to the
invariant measure ��� Let F �

R
f d��� �	 � F � �� Fix � � � � 
� We will show

HD�E� � �h� Take q � 
 so large and � � � so small that F��
F��

� q
q�� � �� Let now

J� � fx � J � �
���x� � 
g� By Remark ��
�� m�J�� � 
� For every x � J� and every
n � 
� set xjn � ��jn�x�� where 
�	� � x� In view of Birkho�"s ergodic theorem and

Egorov"s theorem there exists J
 � J� 
 E such that m�J
� � �� and exp
�
n�F � ����

�
�

j���jn��
n�x��jn � exp

�
n�F � ����

�
for all n � 
 su�ciently large and all x � J
� Hence

there exists n
 � 
 such that

���
�� enF��� � m�xjn� � enF����

and

���

� diam�xjn�
h � enF���

for all x � J
 and all n � n
� Given now � � r � exp�n
�F � ���h� and x � J
� let
n�x� r� � � be the minimal number n such that diam�xjn��� � r� Using ���
��� we deduce
that n�x� r� � 
 � n
� hence n�x� r� � n
 and diam�xjnx�r�� � r� In view of Lemma ����

for every z � J
 and every � � r � exp�n
�F � ���h�� there are k � VdD
�d����
 �D���

points x�� � � � � xk � J
 such that J
 
 B�z� r� �
Sk
j	� xj jnxj �r�� Let #m � mjJ� be the

measure m restricted to the set J
� Using ���
�� and ���

� we get

#m�B�z� r�� �
kX

j	�

m�xj jnxj �r�� �
kX

j	�

enxj �r�F���

�
kX

j	�

exp

�
�n�xj� r� � 
��F � ��

F � �

F � �
�

n�xj� r�

n�xj� r� � 


�
�

kX
j	�

�diam�xj jnxj �r��
�h�

� krh� �

�	



Therefore� HD�E� � �h and thus� HD�m� � HD� #m� � �h which �nishes the proof�

Corollary ���
� If S is hereditarily regular� then HD�m� � h�

Proof� Since S is hereditarily regular there exists � � � such that ��h � �� � 	
which means that

P
i�I jj�

�
ijj
h�� � 	� Since jj��ijj

�� � �h log jj��ijj for all but perhaps

�nitely many i � I� the series
P

i�I �h log�jj�
�
ijj�jj�

�
ijj
h converges� Thus Theorem ����

applies and the proof is �nished�

We should note however that there are regular systems where the entropy of ��� ���
is in�nite and HD�m� � h�

Let us �nish this section with some comments which seem to be relevant in this place�
Namely� for �nite it c�i�f�s� BD�J� � HD�J�� This is

no longer the case for in�nite c�i�f�s� Roughly speaking the reason is that X�	� is in
some sense highly independent of J � In particular� in Section 	 we give examples� even of
regular locally �nite linear systems� such that HD�J� � BD�J� � HD�J� � HD�X�	���

�� Geometric measures

In this section our main objective is to study Lebesgue� Hausdor�� and packing mea�
sures of regular and hereditarily regular systems� In particular� we prove in this context
some re�nements of Theorems ��� and ��� relating the pointwise scaling behavior of confor�
mal measure m at the boundary� X�	�� to the values of Hausdor� and packing measures
on the limit set J � Moreover� at the end of the section we prove a theorem which con�
cerns irregular systems and establishes the �dimensionlessness� of their limit sets in the
restricted sense� We begin with the following �ner characterizations of the Hausdor� di�
mension of the limit sets which are more useful in estimating dimensions of various systems�
Note that in condition �b� the distortion constant K is involved whereas in condition �c�
it is not �cf�� Section ��� Note also that �

n
�t� treated as a function of n with �xed t is

supermultiplicative whereas �n�t� was submultiplicative�

Theorem 	��� If S is a regular c�i�f�s�� then for a real number t � � the following
three conditions are equivalent�

�a� t � h is the Hausdor dimension of J �

�b� t is the only number such that


 � �n�t� � Kd

for all n � 
� where d is the dimension of the euclidean space containing X�

��



�c� t is the only number such that

�
n
�t� � 
 � �n�t�

for all n � 
� where �
n
�t�� �

P
��In inf j�

�
�j
t and inf j���j � inffj�

�
��x�j � x � Xg�

Proof� That the Hausdor� dimension h satis�es the inequalities appearing in �b� and
�c� follows immediately from ������ Theorem ��
�� and since �n�t� � Kt�

n
�t� � �n�t��

Conversely� if t satis�es either �b� or �c� for each n � 
� then

P�t� � lim
n��




n
log�n�t� � lim

n��




n
log�

n
�t� � �

and therefore t � h in view of Theorem ��
	�

Lemma 	��� If m is a t	conformal measure on J � then Ht is absolutely continuous
with respect to m and dHt�dm � �DK�t� In particular� Ht�J� is �nite�

Proof� In view of �BDP���BDP�
�� and conformality of m we have diam����J�� �
Djj���jj and m����J�� � K�tjj���jj

t� Hence diam����J��
t � �DK�tm����J��� Let now A

be a closed subset of J and for every n � 
 put An � f	 � In � ���J�
A �� �g� Then the
sequence of sets

S
��An

���J� is decreasing and
T
n��

�S
��An

���J�
�
� A� Therefore

Ht�A� � lim inf
n��

X
��An

�
diam����J��

�t
� lim inf

n��
�DK�t

X
��An

m����J��

� �DK�t lim inf
n��

m
� �
��An

���J�
�
� �DK�tm�A��

Since J is a separable metric space� the measure m is regular and therefore the inequality
Ht�A� � �DK�tm�A� extends to all Borel subsets of J � The proof is �nished�

Let us now prove an analogous result for packing measures�

Lemma 	��� If m is a t	conformal measure for a c�i�f�s� S � f�i � i � Ig and
either I is �nite or J 
 Int�X� �� �� then m is absolutely continuous with respect to  t�
Moreover the Radon	Nikodym derivative dm�d t is uniformly bounded away from in�nity�
In particular�  h�J� � ��

Proof� If I is �nite� then the result follows from Lemma ��
�� So� suppose that
J 
 Int�X� �� �� Then there exists q � 
 and � � Iq such that �� �X� � Int�X�� Set
� � dist��� �X�� X�� Let

R � f	 � I� � 	j�n���n�q� � � for in�nitely many n"sg

and let R
 be the set of those elements of I
� which contain no subword � � Since �� �
R
 �

�� we get ��R
� � 
� and since �
���I�nR
� � I�nR
� it follows from ergodicity of � proven

in Theorem ��� that ��R
� � �� As I
� n R �

S
n�
 �

�n�R
�� we obtain ��I
� n R� � ��

Therefore� using Lemma ���� we get m�J n 
�R�� � � � 
���J n 
�R�� � ��I� nR� � ��

��



Take now 	 � R and an integer n � 
 such that 	j�n���n�q� � � � Put x �

�	� and consider the ball B�x�K��jj���jn jj��� Since by �BDP��� B�x�K

��jj���jnjj�� �

��jn
�
B�
��n�	��� ��

�
and since B�
��n�	��� �� � Int�X� � X� using �BDP�
� and confor�

mality of m we get

m
�
B�x�K��jj���jn jj��

�
� jj���jn jj

tm�B�
��n�	��� ��� � jj���jn jj
t

� �K����t�K��jj���jnjj��
t�

Since m�J n 
�R�� � �� applying Theorem ����
� we thus get  t�E� � �K����tb�d�m�E�
for every Borel subset E of J � The proof is �nished�

The assumption J 
 Int�X� �� � is actually known in the literature as the Strong
Open Set Condition �SOSC�� Actually� the �SOSC� requires the existence of a set X
satisfying ����� � ����� and the condition J 
 Int�X� �� �� In order to clarify the situation
note that X is not uniquely determined by the contractions �i and the limit set J � So the
question is� Given a c�i�f�s�� can one adjust X so that �SOSC� holds$ This is exactly what
Schief accomplishes in the case of a �nite system of similarities �see ������

Now for each n � � put

Xn �
�
��In

���X��

We shall now prove two results concerning the d�dimensional Lebesgue measure � of these
sets� the Lebesgue measure of the limit set J � and an estimate on the Hausdor� dimension
of J �

Proposition 	�	� If S is a c�i�f�s� and �d
�
Int�X� n X�

�
� �� then there exists

� � � � 
 such that �d�Xn� � �n�d�X� for all n � 
� In particular� �d�J� � ��

Proof� Put G � Int�X� nX� and � � K�d�d�G���d�X� � 
� In view of �BDP� we
have �d����G�� � ��d����X��� In view of �OSC� we have ���G� 
 �� �X� � � if 	 �� �
and j	j � j� j� Thus for all n � �

Xn�� �
�
��In

���X�� �
�
��In

���X nG� �
�
��In

���X� n
�
��In

���G� � Xn n
�
��In

���G��

Therefore

�d�Xn��� � �d�Xn�� �
� �
��In

���G�
�
� �d�Xn��

X
��In

�d����G��

� �d�Xn�� �
X
��In

�d����X�� � �d�Xn�� ��d�Xn� � �
� ���d�Xn��

So� putting � � 
� � �nishes the proof�

Theorem 	�
� If S is a regular c�i�f�s� and �d
�
Int�X� nX�

�
� �� then h � HD�J� �

d� If conversely �d
�
X n X�

�
� ��then S is regular� �d�J� � �d�X� � �� in particular�

HD�J� � d� and �d��d�X� is the only conformal measure�

��



Proof� In order to prove the �rst part suppose to the contrary that h � d� Then for
every 	 � I� and every Borel set A � X with �d�A� � � we have

���
� m����A�� � jj���jj
dm�A� � K�djj���jj

d�d�A�
m�A�

�d�A�
Kd � �d����A��K

dm�A�

�d�A�
�

For every n � 
 and every 	 � In de�ne Y� � ���X� 

S
��Innf�g �� �X�� Then the sets

���X� n Y�� 	 � In� are mutually disjoint� in view of ���
�� m�Y�� � � for all 	 � In� and
���� �Y�� � X by �OSC�� Therefore� using ���
�� we get the following estimate

m�Xn� �
X
��In

m
�
���X� n Y�

�
�
X
��In

m
�
���X n ���� �Y���

�

�
X
��In

�d
�
���X n ���� �Y���

�
Kd m�X n ���� �Y���

�d�X n ���� �Y���

� Kd m�X�

�d�Int�X��

X
��In

�d
�
���X� n Y�

�
�

Kd

�d�Int�X��
�d�Xn��

Thus� by Proposition ���� m�J� � limn��m�Xn� � �� This completes the proof of the
�rst part�

Moving to the other part of the theorem notice �rst that for every n � � we have

Xn nXn�� �
�
��In

���X� n
�
��In

���X�� �
�
��In

�
���X� n ���X��

�
�
�
��In

���X nX���

Since �d
�
X nX�

�
� �� we therefore obtain �d�Xn nXn��� � � or equivalently �d�Xn� �

�d�Xn���� Hence �d�J� � limn�� �d�Xn� � �d�X� � �� In particular h � d� Now� it
follows from Lemma ��	 that d � F �S� and P�d� � �� And since �n�d� � �d�X� for all n �
�� we conclude that P�d� � �� thus S is regular� Since obviously �d����A�� �

R
A
j���j

d d�d
for all n � � and all Borel subsets A of X� all the assumptions of Lemma ��
� are satis�ed
and therefore �d��d�X� is d�conformal� So� applying Theorem ��
� �nishes the proof�

Remark 	�� As Example 	�� shows Theorem ��	 fails to be true if regularity of
the system S is relaxed� that is if S is irregular� although still� as Proposition ��� says�
�d�J� � � and the Lebesgue measure of the sets Xn decreases to � exponentially fast�

We would also like to point out that positivity of the Lebesgue measure of Int�X�nX��
the assumption of both Proposition ��� and Theorem ��	 is obviously satis�ed if the interior
of the set Int�X� nX� is nonempty�

Theorem 	��� Suppose that S � f�i � i � Ig is a regular c�i�f�s� Then the following
conditions are equivalent�
�a� S is regular and hS � �S�
�b� There exists a proper co�nite subsystem S� of S such that hS� � hS�
�c� For every proper subsystem S� of S we have hS� � hS �

��



Proof� That �c� � �b� is obvious� The implication �b� � �a� follows from Theo�
rem ���� and Theorem ����� Thus� we are only left to show that �a� � �c� and we only
need to do it for co�nite subsystems� So� consider a proper subsystem S� � f�i � i � Ig
of S� Suppose �rst that S� is irregular and �x any number � � ��S� hS�� By Lemma ��
�
PS����� � 	 and therefore by Theorem ��
	� hS� � � � hS and we are done in this case�
So suppose that S� is regular and additionally suppose to the contrary that h � hS� � hS �
Let m and m� be h�semiconformal measures associated respectively to the systems S and
S� and let � and �� be corresponding probability measures on I� and I �� produced
by Lemma ���� In view of �BDP�� for every 	 � I �� we have

R
j���j

h dm � k���k
h

and
R
j���j

h dm � K�hk���k
h� and consequently ����	�� � Kh���	��� Notice now that

I �� � I� and �� can be regarded as a probability measure on I�� Then this last in�
equality enlarged by the formula ����	�� � � for 	 �� I �� implies that �� is absolutely
continuous with respect � �even d���d� � Kh�� Thus it follows from Theorem ��� that
��� is absolutely continuous with respect to �� Since moreover� by Theorem ���� both
measures �� and ��� are ergodic and ��invariant on I� �the reader is encouraged to make
himself certain about it for ���� they must coincide� This however is a contradiction as
�����k�� � K�����k�� � � and ����k�� � K�����k�� � �� The proof is �nished�

In view of Theorem ����� hS � �S for every hereditarily regular system S� Therefore�
as a consequence of Theorem ��� we get the following�

Corollary 	��� it If S � f�i � i � Ig is a hereditarily regular c�i�f�s� and S� is a
proper subsystem of S� then hS� � hS �

Lemma 	��� If S � f�i � i � Ig is a regular c�i�f�s� and there exist a sequence of
points zj � X�	� and a sequence of positive reals frj � j � 
g such that

lim sup
j��

m�B�zj � rj��

rhj
�	�

then Hh�J� � ��

Proof� Fix � � � and take z � zj � r � rj � dist�X� V � such that m�B�z� r��r
�h �

���� Consider J� to be the subset of those points x in J that can be expressed as
x � 
�	�� where each element of I appears in 	 in�nitely often� Since z � X�	� and
by ���	�� there exists i � I such that �i�X� � B�z� r�� Consider an index k � 
 such
that 	k � i and denote by � the map ��jk��

� By �BDP�
� B���z�� jj��jjr�  ��B�z� r���
in particular dist�x� ��z�� � jj��jjr� Consequently B�x� �jj��jjr�  ��B�z� r��� Thus� by
semiconformality of m� �BDP�� and the choice of � we get

m�B�x� �jj��jjr�� � K�hjj��jjhm�B�z� r�� � ���K�hjj��jjhrh

� �����K��h
�
�jj��jjr

�h
Hence� applying Theorem ����
� and then letting � � � we get Hh�J�� � �� The same
argument as in the proof of Lemma ���� based on ergodicity of � proven in Theorem ����

��



gives m�J n J�� � � and therefore by Lemma ���� Hh�J n J�� � � which completes the
proof�

Lemma 	���� Let S � f�i � i � Ig be a regular c�i�f�s� Suppose that there are
two constants L � �� � � �� and � � 
 such that for every i � I and every r with
�diam��i�X�� � r � � there exists y � �i�V � such that m�B�y� r�� � Lrh� Then  h�J� �
�	�

Proof� First notice that by increasing L if necessary� the assumption of the lemma
continues to be ful�lled if the number � is replaced by any other positive number� We
take � � ���� where � � dist�X� V �� We can also assume D��� � 
� Fix � � r � ��
x � 
�	� � J � and take maximal k � � such that

����� ��jk�V �  B�x�D��r��

Abbreviate ��jk�� by �� Then ��V � does not contain B�x�D��r� and� as by �BDP����
��V �  B�x�D��jj��jj�� we �nd D��r � D��jj��jj� Hence� by �BDP���� B�x� r� 
B�x�Djj��jj�  ��V � and therefore� using semiconformality of m we get m�B�x� r�� �
K�hjj��jjhm�V � � K�hjj��jjh� If now �DKjj��jj � ��D�����r� then

m�B�x� r��

rh
� �h��D�K����h�

Otherwise�

����� �DKjj��jj � ��D�����r�

Set now g � ��k�� and let y be an arbitrary point in g�V �� Since diam�g�V �� � Djjg�jj
and since � � 
� it follows from ����� that

����� B
�
y� ��D�����jj���jk jj

��r
�
� B

�

��k�	��� D���jj���jk jj

��r
�
�

From �BDP�
�

��jk
�
B�
��k�	��� D���jj���jk jj

��r
�
� B

�
x�D���r

�
� B�x� r�����	�

In view of ������ we have ��D�����jj���jk jj
��r � �diam�g�V ��� By ����� and �BDP����

D��jj���jk jj
��r � 
� hence ��D�����jj���jk jj

��r � ���� As the number ��D�����jj���jk jj
��r

does not depend on the choice of y � g�V �� we can assume that y satis�es the assumption
of our lemma� Using this assumption� it follows from ����� and ���	� that

m�B�x� r�� � K�hjj���jk jj
hL��D���h�hjj���jk jj

�hrh � L�h��D�K��hrh�

The proof is �nished�

Lemma 	���� Let S � f�i � i � Ig be a regular c�i�f�s� Suppose that there are two
constants L � �� � � 
 such that for every i � I and every r � �diam��i�X�� there exists
y � �i�V � such that m�B�y� r�� � Lrh� Then Hh�J� � ��

�




Proof� Set � � dist�X� V �� Without loss of generality� we can assume that �diam�X�
� 
� Take an arbitrary x � J and radius r � �� Set #r � �KD���r� For every z �
B�x� r� 
 J consider a shortest word 	 � 	�z� such that z � 
��	�� and ���X� � B�z� #r��
Then diam���jj�j��

�X�� � #r� Let R � f	�z�jj�z�j�� � z � J 
 B�x� r�g� Notice that R is
�nite since limi�I diam��i�X�� � � and since limn�� supfdiam����X�� � 	 � Ing � ��
Therefore we can �nd a �nite set fz�� z�� � � � � zkg � J 
 B�x� r� such that the family
R� � f	�zj�jj�zj�j�� � j � 
� � � � � kg � R consists of mutually incomparable words and the
family f
�	�zj�jj�zj�j�� � j � 
� � � � � kg covers B�x� r�
J � Now� temporarily �x an element
z � fz�� z�� � � � � zkg� set 	 � 	�z�� q � j	j� and � � ��jq��

� Since diam���Int�X��� � #r�

it follows from ���
�� that �d���Int�X�� 
 B�z� #r�� � �VdD
��Drd� Therefore �dVd#r

d �
�d�B�x� �#r�� � �R��VdD��D#rd� which implies that �R� � ��D��d���� By the choice of
	 we have D��K��jj��jj � jj���q jj � �#r� whence �KD�jj��jj��#r � Djj���q jj � diam���q �X���
So� if y � ��q �X� is the point from the assumptions of the lemma corresponding to the
radius ��KD�jj��jj��#r � ��diam���q �X��� using �BDP��� and inequality �rKjj�

�jj�� �
�rKD#r�� � �� we can estimate

B�x� r� 
 ��X� � B�z� �r� 
 ��X� � �
�
B�����z�� �rKjj��jj���

�
� �

�
B�y� �#rKjj��jj�� � �#rKjj��jj��D��

�
� �

�
B�y� �D�Kjj��jj��#r�

�
So� by assumptions of the lemma�

m�B�x� r� 
 ��X�� � jj��jjhm
�
B�y� �D�Kjj��jj��#r�

�
� jj��jjhL

�
�D�Kjj��jj��#r

�h
� L��D�K�����hrh

Therefore m�B�x� r� � �R�L��D�K�����hrh � ��D��d���L��D�K�����hrh and apply�
ing Theorem ��� �nishes the proof�

Lemma 	���� If S � f�i � i � Ig is a regular c�i�f�s� and there exist a sequence of
points zj � J and a sequence of positive reals frj � j � 
g such that B�zj� rj� � X and

lim inf
j��

m�B�zj � rj��

rhj
� ��

then  h�J� �	�

Proof� For every � � I� denote by R� the set R de�ned in the proof of of Lemma ����
It has been shown there that ��R� � � 
� and therefore� as I

� is countable� �
�T

��I� R�

�
�


� Thus� it follows from Lemma ��� that m�J�� � 
� where J� � 

�T

��I� R�

�
is the set of

those points x � J that can be expressed as x � 
�	� and each element of I� appears in
	 in�nitely often� Fix � � �� By the assumption there exists z � zj � 
��� and r � rj��
such that m�B�z� �r��r�h � K�h�� Take p � 
 so large that diam��jp�X�� � r� By the
de�nition of J� there exists q � 
 such that 	j�q���q�p� � �jp� Thus dist�
��q�	��� z� �

��



diam��jp�X�� � r� whence B�
��q�	��� r� � X� Therefore using �BDP��� �rst and then
�BDP�
�� and conformality of m

m�B
�

�	�� K��jj���jq jjr

�
� � m

�
��jq�B�
��

q�	��� r��
�
� jj���jq jj

hm
�
B�
��q�	��� r�

�
� jj���jq jj

hm�B�z� �r�� � jj���jq jj
hK�h�rh �

�
K��jj���jq jjr

�h
�

Since m�J�� � 
� the application of Theorem ����
� �nishes the proof�

Lemma 	���� Suppose that S is a regular c�i�f�s� and there exists z � X�	� such
that lim supr�
m�B�z� r���r

h � �� Suppose also that there exists an open cone C�z� � X
with the vertex z such that z � J 
 C�z�� Then  h�J� �	�

Proof� By the second assumption there exists an in�nite sequence zj � J 
C�z� such
that lim zj � z� Since C�z� is a cone there exists � � � � 
 such that for all j su�ciently
large� passing to a subsequence we can suppose that for all j� we have B�zj � �jzj � zj� �
C�z�� Hence B�zj � �jzj � zj� � X and m�B�zj � �jzj � zj�� � m�B�z� �
 � ��jzj � zj���
Therefore� in view of the �rst assumption of Lemma ��
� the assumptions of Lemma ��
�
are satis�ed and the proof is completed�

As an immediate consequence of this lemma and Corollary ���� we get the following�

Corollary 	��	� Suppose that S is a c�i�f�s� and X is a compact nondegenerate
subinterval of the real line� If there exists z � X�	� such that lim supr�
m�B�z� r���r

h �
�� then  h�J� �	�

Lemma 	��
� If S � f�i � i � Ig is a regular c�i�f�s�� there exist a sequence of points
zj � X�	� and a sequence of positive reals frj � j � 
g such that limj��m�B�zj � rj���r

h
j

� �� then  h�J� �	�

Proof� By the assumption of the lemma there exists � � � such that �i�B�z� ���
J �
�i�J
B�z� ��� and therefore for every � � r � � we havem��i�B�z� r��� �

R
Bz�r�

j��ij
h dm�

Let J� be the subset of those points x in J that can be expressed as x � 
�	�� where
each element of I appears in 	 in�nitely often� So� for every x � J� and every r � �
there exists q � 
 such that dist�z� 
��q�	��� � r and diam���q���X�� � r� The rest of
the proof is the same as the corresponding part of the proof of Lemma ��
��

Theorem 	���� If S is irregular� then either measure Hg�J� or  g�J� is either zero
or in�nity for every gauge function g of the form thL�t�� where L�t� is a slowly varying
function� Additionally Hh�J� � ��

Proof� Suppose that a measure Hg�J� or  g�J� �call it Gg� is �nite� Then the
Jacobian �Radon�Nikodym derivative� of a map ��� 	 � I�� with respect to the mea�
sure Gg is equal to j���j

h� By the de�nition of pressure there exists n
 � 
 such thatP
��In jj�

�
�jj

h � exp�nP�h���� for every n � n
� Hence

Gg�J� �
X
��In

Gg��i�J�� �
X
��In

jj���jj
hm�J� � exp�nP�h����Gg�J�

��



Thus letting n � 	 and noting that by Theorem ���
 P�h� � �� we obtain Gg�J� � ��
The proof that Hh�J� � � is very similar but requires slightly di�erent argument as we do
not know whether Hh�J� is �nite� Indeed� if n � n
 is as above� then

X
��In

�
diam��i�X��

�h
�
X
��In

Dhjj���jj
h � Dh exp�nP�h����

and letting n�	 we conclude that Hh�J� � ��

Theorem 	���� If S is a c�i�f�s�� g�t� is a gauge function of the form thL�t�� where
L�t� is a slowly varying function� and one of the numbers Hg�J� or  g�J� is positive and
�nite� then the system S is regular and the conformal measure m is up to a multiplicative
constant either equal to Hg or  g�

Proof� That the system S is regular follows immediately from Theorem ��
�� The
other part of the theorem follows now from Lemma ��
� applied with the measure � being
either Hg�Hg�J� or  g�jPig�J� and from Theorem ��
��

As an immediate consequence of this theorem and Lemma ��
� we get the following�

Corollary 	���� If a c�i�f�s� S is �nite� then� up to a multiplicative constant� the
following three measures on J are equal� Hh�  h� and the conformal measure m�

	� Examples

In this section we provide a number of examples of in�nite c�i�f�s� showing how exible�
how large a variety of fractal features one can meet among them�

Example 
��� �J is an F�� but not a G��� Denote by Q the set of all rational
numbers in ��� 
�� Let X � ��� 
�� ��� 
� and let % � f�x� x� � Xg be the diagonal of X�
Consider a c�i�f�s� f�i � X � X � i � Q � f�
gg consisting of linear mappings and such
that
�a� �i�X� 
% � f�i��� 
�g � f�i� i�g for all i � Q
�b� ����x� y� � �x��� �y� 
����
�c� The sets �i�X�� i � Q � f�
g� are mutually disjoint�

Then J 
% � Q is not Gd� so neither is J � Let us also note that this system is not
locally �nite�

Example 
��� �PD�J� � BD�J� � HD�J��� Take any sequence of positive numbers
fri � i � 
g �for example of the form bi� � � b � 
� such that the equation

P
i�� r

t
i � 


has a �unique� solution and this solution is less than 
� Consider a family f�i � fz � CI �
jzj � 
g � fz � CI � jzj � 
g � i � 
g of similarity maps satisfying the �OSC� and such
that jj��ijj � ri and X�	� � fz � jzj � 
g� Then by Theorem ���� PD�J� � BD�J� �
BD�X�	�� � 
 and by Theorem ��
	� HD�J� � 
�

��



Example 
��� �Irregular system�� Such a system has been described in Ex� ��	 of
�
��� Since this is a very short and important example we repeat here its construction�

Let I � f�n� k� � n � 
 and 
 � k � �n
���g� let X � ��� 
�� and let S � f�n�k � X � X �

�n� k� � Ig be a system consisting of similarity maps �n�k such that jj��n�kjj � �
�n��n� and

such that the intervals �n�k�X� are mutually disjoint� This last requirement can be satis�ed

since
P

n�k��I jj�
�
n�kjj �

P
n�� �

�n��n��n
��� � 
�� � 
� Notice that by this computation

we have shown that ��
� � 
�� � 
� Observe also that ��t� �
P

n�� �
n�����n

��n�t �P
n�� �

n���t��nt�� � 	 for all � � t � 
� Thus� in view of Theorem ���
 S is irregular�
in view of Theorem ���� h � HD�J� � 
� and in view of Theorem ��
�� J is dimensionless
in the restricted sense�

Example 
�	� �Linear� regular but not hereditarily regular�� This example is very
similar to the Example 	��� The only di�erence in its de�nition is that now we take
I � f�n� k� � n � 
 and 
 � k � �n

�

g� Then the same computations as in Example 	��
above show that ��
� � 
� thus P�
� � �� and ��t� �	 for all � � t � 
� Hence� in view
of Theorem ��	� S is regular� the only conformal measure is the Lebesgue measure ��� and
h � HD�J� � 
� Moreover in view of Theorem ����� S is not hereditarily regular�

Notice that Example 	�� provides a number of irregular examples� In fact every co�nite
subsystem of S is irregular�

Example 
�
� �Hereditarily regular linear system with � �  h�J� �	� Hh�J� � ���
Let X � ��� 
� and let S � f�n � X � X � n � 
g be the c�i�f�s� consisting of similarities
�n�x� �

x
�n� �

�
n �

�
�n� so that �n��� �

�
n �

�
�n� and �n�
� �

�
n � Thus jj�

�
njj �

�
�n� and

��t� �
P

n�� jj�
�
njj

t �
P

n�� �
�tn��t� Hence h � HD�J� � 
�� and by Theorem ���� S

is hereditarily regular� Let m be the corresponding conformal measure� Then for every
n � 


m
�
B��� 
�n�

�
�
X
k�n

�



�k�

�h
� ��h

Z �

n

x��h dx � ��h



�h� 


�



n

��h��

�

Taking now for any � � r � 
 the unique integer n � 
 such that 
��n�
� � r � 
�n� we
get m�B��� r�� � Cr�h��� where C � ���h� 
��h��h������ Since h� 
 � � it now follows
from Lemma ��� that Hh�J� � �� Positivity of  h�J� is guaranteed by Lemma ���� We
now show that the assumptions of Lemma ��
� are satis�ed with � � � if for every n � 

the point y is chosen to be 
�n� Indeed� �x n � 
 and take 
�n� � r � 
� Suppose �rst that
r � 
���n�� Then n � � and �

n
� r � �

�n � Let I�r� � fk � 
 � �
k
� �

n
and �

k�� �
�
n
� rg�

Notice that �I�r� � �
�n� r��� � n � n�r��
� nr� � n�r� Therefore

m
�
B�
�n� r�

�
�

X
k�Ir�

�



�k�

�h
�

�



���n��

�h
�I�r� � �
���hn��hn�r �

� �
���h
�



n�

�h��
r � �
���hrh��r � �
���hrh�

�	



Now suppose that 
���n� � r � ��n� Then 
�n� � r�� � 
���n� and in view of the
previous case m�B�
�n� r�� � m�B�
�n� r���� � �
���h�r���h � �����hrh� Finally sup�
pose that r � ��n� Then B�
�n� r�  B��� r��� � C�r����h�� � �C��hrhrh��� Thus the
assumptions of Lemma ��
� are satis�ed and therefore  h�J� �	�

We should mention here that in the next section the c�i�f�s� induced by complex
continued fractions will be considered which is also hereditarily regular and whose limit
set has h�dimensional Hausdor� measure � and of h�dimensional �nite packing measure�
The idea for proving these properties will be the same there as in Example 	�	�

Example 
��� �Hereditarily regular linear system with  h�J� �	� Hh�J� � ��� Let
X � ��� 
� and let S � f�n � X � X � n � 
g be the c�i�f�s� consisting of similarities
�n�x� � ���nx � ��n � ���n so that �n��� � ��n � ���n and �n�
� � ��n� Thus
jj��njj � �

��n and ��t� �
P

n�� jj�
�
njj

t �
P

n�� �
��nt� Hence h � 
�� and by Theorem ����

S is hereditarily regular� Let m be the corresponding conformal measure� Then for every
n � 
 we have m

�
B��� ��n�

�
�
P

k�n �
��kh � �����nh�� Taking now for any � � r � 
��

the unique integer n � 
 such that ��n��� � r � ��n� we get

m�B��� r�� � �r�h�

Thus�  h�J� � 	 by Corollary ��
�� Finiteness of Hh�J� is guaranteed by Lemma ����
We now show that the assumptions of Lemma ��

 are satis�ed with � � 
 if for every
n � 
 the point y is chosen to be ��n� Indeed� �x n � 
 and take ���n � r � 
��� If
r � ��n� then m�B���n� r�� � m�B��� �r�� � ���r��h � �r�h� In general case r��� � ��n

and then m�B���n� r�� � m�B���n� r����� � ��r�����h � �rh� Thus the assumptions of
Lemma ��

 are satis�ed and therefore Hh�J� � ��

Example 
��� �Hereditarily regular linear system with  h�J� � 	� Hh�J� � ���
This example is made up by gluing together Examples 	�	 and 	��� Namely let X � ��� ��
and S � f�n�
� �n�� � n � �g� where �n�
�x� �

�
�n�

x
� �

�
n �

�
�n� and �n���x� � ���n x� �

��n� ���n�
� Then �n�
���� ��� � �
�
n �

�
�n� �

�
n � � ��� 
��� and �n������ ��� � ��

�n� ���n�

� ��n � 
� � �
� �� and ��t� �

P
n���jj�

�
n�
jj

t � jj��n��jj
t� �

P
n�� �

�tn��t � ��t���nt�
So� the interval of convergence of ��t� is �
���	�� Thus� in view of Theorem ����� S
is hereditarily regular and h � HD�J� � 
��� We see that X�	� � f�� 
g and if m is
the corresponding h�conformal measure� then as in Example 	�	 we get m�B��� 
�n�� �
��h � 
����
�n��h�� which in view of Lemma ��� implies that Hh�J� � � and as in
Example 	�� we get m�B�
� ��n�� � �h��h � 
������n��h which in view of Corollary ��
�
implies that  h�J� �	�

Example 
��� �One�dimensional systems�� Here we want to describe how every
compact subset F of the interval X � ��� 
� gives canonically rise to a linear c�i�f�s� on
X such that X�	� � �F �d � fx � X � x is an accumulation point of Fg� the Cantor�
Bendixon derived set of F � Indeed� let R be the family of all connected components of
X n F and for every C � R let �C � X � X be the unique linear map such that �C��� is

��



the left endpoint of the closure of C and �C�
� is the right endpoint of the closure of C�
The system S � f�C � X � X � C � Rg has the property required�

Example 
��� We want to describe here an example of a hereditarily regular c�i�f�s�
S such that

�a� Condition �c� of Lemma ��� is not satis�ed�
�b� Condition �a� of Lemma ��� is satis�ed for every �nite subsystem of S�
�c� The Perron�Frobenius operator is almost periodic�

Indeed� let frn � n � 
g� � � rn � 
� be any sequence of real numbers such thatP
n�� rn � 
 and the set of parameters t for which the series

P
n�� r

t
n converges� is open�

Let f�an�bn� � n � 
g be a countable disjoint family of closed subintervals of the interval
��� 
� such that bn � an � rn for all n � 
� Finally let fgn � ��
� �� � �
� �� � n � 
g be
a familly of continuous functions that are constant on each interval of the form �ak� bk��
k � 
� Moreover we can choose these functions gn not to form an equicontinuous family�
and with a suitable choice of numbers rn and suitable placing of intervals �an� bn� we can
require all gn to be Lipshitz continuous�

Now we have all ingredients needed to de�ne our system S� We declare X � ��� 
��
V � ��
� ��� and for every n � 
 we de�ne the map �n � ��
� ��� R� setting

�n�x� � an �mn

Z x

��

gn�t� dt�

where mn � �bn � an��
R �
��

gn�t� dt�
��� Note that �n��
� � an and �n���
� ��� � �an� bn��

Since ��n�x� � mngn�x� �
�
��bn�an� � ���� the maps �n� n � 
� form an iterated function

system and in order to show its conformality our only task is to check that �BDP� holds�
Indeed� for all integers n� k � 
 set ��n� k� � mngn�ak�� Then for every n � 
� every
	 � In� and every x � ��� 
� we have

�	�
� ����x� � ��	�� 	����	�� 	�� � � � ��	n��� 	n�����	n��� 	n�m�ng�n�x��

But since gk�y��gk�x� � � for all k � 
 and all x� y � ��
� ��� we see that j����y�j�j�
�
��x�j �

g�n�y��g�n�x� � � for every n � 
� and every 	 � In� The proof of �BDP� is �nished�
The almost periodicity of the Perron�Frobenius operator also follows from �	�
� since

then all its iterates are constant on the segments of the form �an� bn� and therefore we can
apply Lemma a���

In order to see that the system S is hereditarily regular note that rn�� � �bn�an��� �
jj��njj �

�
� �bn�an� �

�
�rn� Therefore F �S� is an open set and the required property follows

from Theorem �����
Now� that condition �a� of Lemma ��� is satis�ed for every �nite subsystem of S

follows immediately from the properties of gn and the formula �
�
n�x� � mngn�x�� Since

log j��n�y�j�log j�
�
n�x�j � log�gn�y���log�gn�x�� � ��gn�y��gx�� with some 
�� � � � 
�

and since the family fgn � ��
� �� � �
� �� � n � 
g is not equicontinuous� we see that
property �c� of Lemma ��� fails�

��



�� Complex continued fractions

In this section we focus our attention on a special in�nite iterated function system�
introduced and studied in �

�� that is generated by complex continued fractions� Namely�
let I � fm � ni � �m�n� � IN � ZZg� where ZZ is the set of integers and IN is the set of
positive integers� Let X � CI be the closed disc centered at the point 
&� with radius 
��
and let V � B�
��� ����� For b � I we de�ne �b � V � V putting

�b�z� �



b� z

The following �gures illustrate the construction of J �

FIGURES GO HERE

��



Using the Koebe distortion theorem the following properties can be easily checked by
a straightforward direct computation� There exists a constant K � 
 such that for every
b � I

���
� �b�V � � B��� Kjbj���

����� K��jbj�� � j��b�z�j � Kjbj��

����� K��jbj�� � diam��b�V �� � Kjbj��

One would like to call the collection of mappings f�b � b � Ig a conformal iterated func�
tion system� This however is not quite possible as ������ � �
 and condition ���
� fails�
Nevertheless� since it is satis�ed for the system f�b � �c � �b� c� � I � Ig� in the sequel we
will treat the family f�b � b � Ig as a c�i�f�s�� Let J denote the associated limit set� We
begin with the following�

Proposition ���� The system S � f�b � b � Ig is hereditarily regular and ��S� � 
�

Proof� For every n � � set I�n� � fb � I � �n � jbj � �n��g� Notice that there
exists � � 
 such that ����n � �I�n� � �� � �n� Therefore ��t����

P
n�
 �

��t�n �

��t
P

n�
�I�n��
�tn �

P
b�I jbj

��t �
P

n�
�I�n��
�tn � ��

P
n�
 �

��t�n for all t � ��

Hence� using ����� we get ��tKt����
P

n�
 �
��t�n � ��t� � ��Kt

P
n�
 �

��t�n� Thus
��S� � 
� ���� �	� and in view of Theorem ���� our system is hereditarily regular�

In view of this proposition� the last assertion of Theorem ����� and Theorem ��	 we
get the following result which was �rst proved in �

� with di�erent methods�

Theorem ���� 
 � h � HD�J� � ��

��



Let m be the h�conformal measure associated to the system S � f�b � b � Ig� The
proof of the following lemma is based on the same idea as the proof of Proposition ��
�

Lemma ���� There exists a constant Q � � such that for every � � r � 
 we have
m�B��� r� � Qr�h���

Proof� Let I�r� � fb � I � r�� � Kjbj�� � rg � fb � I � Kr�� � jbj � �Kr��g�
Observe that there exists � � � so small that �I�r� � ��Kr����� Therefore using ���
� �
����� we get

m�B��� r�� � �I�r�K�h��K���hr�h � ����hK���hr�h��

The proof is �nished�

Since � � X�	� and since h � �� this lemma and Lemma ��� give the following�

Theorem ��	� Hh�J� � ��

Now� we shall prove the following�

Theorem ��
� � �  h�J� � �	�

Proof� Positiveness of  h�J� follows from Lemma ���� In order to prove that  h�J�
is �nite we will check that the assumptions of Lemma ��
� are satis�ed� So� let b � I and
let x � �b�V �� Consider jxj� � r � 
���� De�ne I�x� r� � fa � I � �a�X� � B�x� r�g� Let
In�z� be the inverse function� In�z� � 
�z� Notice that if � � r � jxj� then

����� In�B�x� r�� � B

�
jxj�

jxj� � r�



x
�

r

jxj� � r�

�

and
I�x� r� � fa � I � In�B�x� r��  B�a� 
��� 
���g

Suppose �rst that r � jxj��� Then jxj� � r� � �jxj��� and therefore

���	�
jxj

jxj� � r�
�
�

�




jxj

Let now I� � fa � I�x� r� � jaj � jxj
jxj��r�

g� Since jxj��jxj��r�� is the modulus of the center

of the ball In�B�x� r��� there exists � � � such that �I� � �r���jxj� � r�� � �r��jxj��
Therefore by ������ ���	� and since r � jxj� we may write

m�B�x� r�� � �I�K
�h���
��hjxj�h � ���K��hjxj�h

r�

jxj�

� ���K��hjxj�h��r� � ���K��hrh��r�

� ���K��hrh�����

��



Now suppose that jxj�� � r � �jxj� Then jxj� � r�� � jxj�� and therefore by �����

����� m�B�x� r�� � m�B�x� r���� � ���K��hrh

Finally if r � �jxj� then B�x� r�  B��� r���� Thus� in view of Lemma ���� and since h � ��
we can estimate

m�B�x� r�� � Q�r����h�� � Q���hrh��rh � Q���hrh

Combining this estimate� ������ and ����� we conclude that the assumptions of Lemma ��
�
are satis�ed which completes the proof�

The rest of this section is devoted to estimating the Hausdor� dimension h of the limit
set J of complex continued fractions improving quantitatively Theorem ���� Let us state
our estimates as a theorem�

Theorem ���� If J is the limit set of complex continued fractions� then


����� � h � HD�J� � 
���

Proof� Note that� if 	 � �b�� b�� � � � � bn� � In� then

���z� �
pn���	�z � pn�	�

qn���	�z � qn�	�

where p
�	� � �� p��	� � q
�	� � 
� and q��	� � b�� qk�	� � bkqk���	� � qk���	��
pk�	� � bkpk���	� � pk���	�� � � k � n� Frequently we will write qn and pn only instead
of qn�	� and pn�	�� With this convention ���X� is the ball with center

�qn��jqn�� � �qnj��pnqn�� � pn��qn� � pn���jqn�� � �qnj� � �jqn��j���q�n�� � �qn��qn�

qn���jqn�� � �qnj� � �jqn��j���q�n�� � �qn��qn�

and with the radius
�

jqn�� � �qnj� � jqn��j�

Moreover

����z� �
qnpn�� � pnqn��
�qn��z � qn��

�
��
�n

�qn��z � qn��
and j����z�j �




jqn��j�
���z � qn

qn��

����
Set w � qn�qn�� and consider the circle with center w � 
�� and of radius 
��� Let
��w�
��� and ��w�
��� be the two points of this circle lying on the line through � and
w � 
�� with ��w � 
��� closer to the origin� Then

jj���jj �



jqn��j�
sup

�



jz � wj�
� jz � 
��j � 
��

�
�




jqn��j�



��jw � 
��j�

�




and

inf j���j �



jqn��j�
inf

�



jz � wj�
� jz � 
��j � 
��

�
�




jqn��j�



��jw � 
��j�
�

Since j��w � 
���� �w � 
���j � j��w � 
���� �w � 
���j � 
�� � this gives

jj���jj �



jqn��j�
�
j qn
qn��

� �
� j �

�
�

�� � �

jqnj�
�
j� � qn��

qn
j � j qn��

qn
j
��

and

jj���jj �



jqn��j�
�
j qn
qn��

� �
� j�

�
�

�� � �

jqnj�
�
j� � qn��

qn
j� j qn��

qn
j
�� �

Since j� � qn���qnj � jqn���qnj � 
 and since j� � qn���qnj� jqn���qnj � �� we thus get
jj���jj � ��jqnj

� and inf j���j � ����jqnj
��� Set

Fn�t� �
X
j�j	n




jqn�	�j�t

Since �n�t� � �tFn�t� and since �n�t� � �����
tFn�t�� it follows from Lemma ��
�c� that h

is the only number t such that for all n

��t � Fn�t� � �����
t�

Thus� if Fn�t� � �
�
�� then t � h and if Fn�t� � 
�
�� then h � t�

Now let �
 � � � �� � �� � � � � be an increasing sequence of integers� Then summing
over sectors we can write

F��t� �
�X

m	�




m�t
�

�X
m	�

�X
j	�

X
�j��m	jnj��jm




�m� � n��t

� ���t� � �
�X

m	�




m�t

�X
j	�

X
�j��m	n��jm





 � �n�m��t

If m�j�� � jnj � m�j � then 
 � ��j�� � 
 � �n�m�
� � 
 � ��j � So�

���t� � ����t� 
�
�X
j	�

�j � �j��
�
 � ��j �

t
� F��t� � ���t� � ����t� 
�

�X
j	�

�j � �j��
�
 � ��j���

t

Choosing the ��js so that
P�

j	���j � �j�����
 � ��j �
t is as close to 
 as we like we see

that F��t� � ���t� � ����t � 
�� Using �j � j� j � �� 
� � � �� we �nd ���t� � ����t �

�
P�

j	�
�

��j��t � F��t� or ���t� � ����t� 
�����t�� 
� � F��t�� We �nd F��t� � ���t� �

��



����t � 
�
Pk

j	�
�

��j��t � �
�
� with t � 
����� by setting k � 
	�� and evaluating the

middle term with Mathematica�

In order to obtain an upper bound on the dimension of J we employ a general geometric
technique as in �

� and the properties of pressure function� Namely� if � and t are such
numbers that for each 	 � �b�� b�� � � � � bn�

R�	� t� �
X
b

�
diam���b�D��

diam����D��

�t
� � � 
�

then HD�J� � t� In fact this inequality implies that P�t� � log� � �� In our case ���X��
is a disc with radius ��

�
jqn�� � �qnj� � jqn��j�

�
� So�

R�	� t� �
X
b

�
j� � qn���qnj� � jqn���qnj�

j�b� 
 � �qn���qnj� � 


�t

Set

M�k� t� � max
z�D

X
b

�
j� � zj� � jzj�

j�b� 
 � �zj� � 


�t
�

where the sum is taken over all b � m � ni� with 
 � m � k and �k � n � k� Then for
all 	

R�	� t� � g�k� t� �M�k� t� � �t
�
k � 


k

�t



k�t��

�
�t� 


��t� 
��k
�




�t� �

�
�

the second term being an upper estimate on the remainder of the series R�	� t�� Using
some estimates for numerical approximation and especially some programs written by
Barbara Neuberger �which can be obtained through us�� we �nd that M���� 
��� � ����
so that g���� 
��� � 
 and HD�J� � 
��� We also note that this method fails at 
��� since
M�	�� 
���� � 
� Further studies with this method show that HD�J� � 
���	� To obtain
sharper bounds on HD�J�� improvements will be needed in our estimation methods� the
programs and computing power�

Remark ���� Observe that proving estimates on jj���jj and inf j�
�
�j we have simulta�

neously provided techniques to �nd the best possible distortion constant K� Indeed� with
the notation of the proof of Theorem ��� it was shown in �

�� that j
�w � 
��j � 
���
where w � qn�qn��� Thus Rew � 
 and

K� � sup

�
j����x�j

j����y�j
� jx� 
��j� jy � 
��j � 
��

�

� sup

�
jx� wj�

jy � wj�
� jx� 
��j� jy � 
��j � 
��

�
�

��



Therefore K� � j��w � 
���j��j��w � 
���j� � ������ Rotate the line �� w � 
�� to the
positive x�axis with w � 
�� �� �x� ��� ��w � 
��� �� �x � 
��� ��� and ��w � 
��� ��
�x � 
��� ��� Note that x � ���� So� ����� � �x � 
������x � 
���� and the maximum
value occurs when x � ���� Thus K � supK� � ��

�� Problems

In this section we provide the reader with several problems�

Problem ���� What is the Hausdor� dimension HD�J� of the limit set J of complex
continued fractions described in Section �$ We feel that there is a good possibility that
HD�J� will turn out to be some well�known number�

Problem ���� Extending the moduli of derivatives of all contractions �b�z� �
�

b�z �
fm � ni � �m�n� � IN � ZZg� introduced at the very begining of the Section �� to uni�
formly bounded holomorphic functions de�ned on an open neighbourhood of B�
��� 
���
in CI � and applying the Montel theorem we conclude that the Radon�Nikodym derivative
dm��dm� the Gauss measure for complex continued fractions� is a real analytic function
on B�
���
���� What is its precise form$

Problem ���� Is it always true that if m is the conformal measure� then HD�m� �
HD�J�$

Problem ��	� Let S � f�i � X � X � i � Ig be a regular conformal i�f�s�� For every
Borel set A � J put ����A� �

S
i�I �i�A�� We call a Borel probability measure � on J

shift�invariant if ������A� � ��A� for all Borel subsets A of J � We call it ergodic if all the
sets satisfying ����A� � A� have either � measure � or 
� Is it true that m� is the only
shift�invariant ergodic measure with HD�m�� � HD�J�$

Problem ��
� If the open set condition for a c�i�f�s� S holds� then does the strong
open set condition hold$ At least� can one prove the results proven with the assumption
that SOSC holds �Lemma ��� for example� assuming only OSC$

Problem ���� Does there exist a regular c�i�f�s� S such that either measure Hg�J� or
 g�J� is either zero or in�nity for every gauge function g of the form thL�t�� where L�t�
is a slowly varying function$

Problem ���� Can one drop in Theorem ��
� the assumption that L�t� is a slowly
varying function$

��



Appendix

In this section we provide the reader with some results which are slightly aside of our
ow of exposition and as well we outline an alternative approach for some topics contained
in Section ��

We call a Borel probability measure � on J invariant if
P

i�I ���i � �� From this point
on� we assume m is a ��conformal measure� We indicate a direct derivation of the measure
m�� This method makes no use of the abstract symbol space and is constructive�no use is
made of Banach limits as in Section ��

Lemma a��� If there exists a Borel measurable function � � J � ���	� such that
L� � � and

R
� d� � 
� then the probability measure � � �m is invariant and equivalent

to m� whence equal to m��

Proof� The equivalency of � and m is obvious� In order to prove invariancy of �
notice that if A � J is a Borel set� then

X
i�I

� � �i�A� �
X
i�I

Z

iA�

� dm �
X
i�I

Z
A

� � �ij�
�
ij
� dm �

Z
A

X
i�I

� � �ij�
�
ij
� dm

�

Z
A

L� dm �

Z
A

� dm � ��A�

The proof is �nished�

Remark a��� Employing methods similar to those of Section � such a measure � can
be proven to be ergodic and unique� but again no use of the shift representation of J is
required�

Lemma a��� For all x � X� let ��x� � limn��Ln
�x� and ��x� � limn��L
n
�x��

Then K�� � ��x� � ��x� � K�� L��x� � ��x� and L��x� � ��x�� for every x � X�

Proof� Inequalities K�� � ��x� � ��x� � K� are obvious� In order to prove that

L��x� � ��x�� �x � � � and take a �nite subset I� of I such that
P

i�I�
jj��ijj

� � �� where
I� � I n I�� Since I� is �nite� there exists k � 
 such that ���i�x�� � Ln
��i�x�� � �
for all i � I� and all n � k� By the de�nition of ��x�� there exists q � k such that

�	



Lq��
�x� � ��x�� �� Therefore� we get

L��x� �
X
i�I�

���i�x��j�
�
i�x�j

� �
X
i�I�

���i�x��j�
�
i�x�j

�

�
X
i�I�

���i�x��j�
�
i�x�j

� �
X
i�I�

�Lq
��i�x��� ��j��i�x�j
�

�
X
i�I�

Lq
��i�x��j�
�
i�x�j

� � �
X
i�I�

j��i�x�j
�

� Lq��
�x��
X
i�I�

Lq
��i�x��j�
�
i�x�j

� � �
X
i�I�

j��i�x�j
�

� Lq��
�x��K���K�� � ��x�� �� �K��

� ��x�� �
 � �K����

So� letting �� � we get L��x� � ��x�� The proof that L��x� � ��x� is similar�

Lemma a�	� For every x � X� the limits ���x� � limn�� Ln��x� and �
�
�x� �

limn�� Ln��x� exist� Moreover L���x� � ���x� and L���x� � �
�
�x� for all x � X�

Proof� Since L is a positive operator� it is monotone� and therefore� it follows from
Lemma a�� that the sequence fLn��x� � n � �g is non�increasing and bounded from below

by K���� Thus� it is convergent and denote its limit by �
�
�x�� Since �

�
� Ln� for every

n � 
� we get L�
�
� Ln��� and therefore L�

�
� �

�
� In order to prove that L�

�
� �

�

�x x � X and � � �� Take a �nite subset I� of I such that
P

i�I�
jj��ijj

� � �� where
I� � I n I�� Since I� is �nite and since all sequences fL

n��z� � n � �g� z � X� converge�
there is n � � such that �

�
��i�x�� � Ln���i�x��� �� for all i � I�� We then have

L�
�
�x� �

X
i�I�

�
�
��i�x��j�

�
i�x�j

� �
X
i�I�

�Ln���i�x��� ��j��i�x�j
�

�
X
i�I�

Ln���i�x��j�
�
i�x�j

� �K�� � Ln����x��
X
i�I�

Ln���i�x��j�
�
i�x�j

� �K��

� �
�
�x��K���K�� � �

�
�x�� �K��

So� letting �� � we get the required inequality� The case of the function �� can be dealt
with similarly�

The following corollary is an immediate consequence of Lemma a��� Lemma a�
 and
Remark a�� following it or Theorem ����

Corollary a�
� For m	a�e� x � J � we have �
�
�x� � ��x� and ���x� � ��x��

Next� we obtain a su�cient condition for the measure� to have a continuous Radon�
Nikodym derivative with respect to m�

Lemma a��� Fix a compact set X � Y � V � If there exists q � 
 such that the family
of functions flog j���jj
� Y � � � � Iq� 	 � I�g is equicontinuous� then for every continuous

��



function f � Y � R� the family fLn�f� � Y � R � n � 
g is equicontinuous� i�e� the
Perron	Frobenius operator L � C�Y � � C�Y � is almost periodic� In this case� there is a
continuous function � � J � ���	� such that L� � � and

R
� d� � 
�

Proof� First note that in view of ����� there exists a �nite set Iq� � Iq such that
writing Iq� � Iq n Iq� we have

P
��Iq�

jj��� jj
� � �� Now� it is of course enough to prove that

the family fLn�f� � Y � R � n � qg is equicontinuous� So� �x � � �� Take � � � so small
that jf�y� � f�x�j � � and

P
��Iq�

jj����y�j
� � j����x�j

�j � � if jy � xj � �� x� y � Y � and

moreover j log�j����y�j�� log�j�
�
��x�j�j � � if jy � xj � �� x� y � Y � and j	j � q�

Take now x� y � Y with jy � xj � �� Then by �����

jLnf�y�� Lnf�x�j �

�
X
��In

�
j����y�j

�f����y��� j�
�
��x�j

�f����x��
�

�
X
��In

j����y�j
�jf����y��� f����x��j�

X
��In

jf����x��jjj�
�
��y�j

� � j����x�j
�j

� K��� jjf jj�
X
��In

jj����y�j
� � j����x�j

�j�a�
�

In order to estimate the last summand in the display above observe that

X
��In

jj����y�j
� � j����x�j

�j �

�
X

��In�q

X
��Iq

�
jj��� ����y��j

�j����y�j
� � j��� ����x��j

�j����x�j
�j
�

�
X
��Inq

X
��Iq

�
j��� ����y��j

�jj����y�j
� � j����x��j

�j�

� j��� ����x��j
�jj��� ����y��j

� � j��� ����x��j
�j
�

�
X

��In�q

X
��Iq

j��� ����y��j
�
�
jj����y�j

� � j����x�j
�j�

� �jj���jj
�jj��� jj

�j log�j��� ����y��j�� log�j�
�
� ����x��j�j

�
�

X
��In�q

X
��Iq

�
j��� ����y��j

�jjj����y�j
� � j����x�j

�j
�
� �K����a���

Let us estimate the �rst summand in the last line of this display� We have

X
��In�q

X
��Iq�

j��� ����y���j
�jjj����y�j

� � j����x�j
�j

�
X

��In�q

X
��Iq�

jj��� jj
��jj���jj

�

� �K���a���

��



and X
��In�q

X
��Iq�

j��� ����y���j
�jjj����y�j

� � j����x�j
�j

�
X

��In�q

jj��� jj
�
X
��Iq�

jj����y�j
� � j����x�j

�j

� K���a���

Thus combining �a�
���a��� we get jLnf�y�� Lnf�x�j � K��
 � jjf jj��� � �K���� which
�nishes the proof�

Remark a��� We would like to remark that if the family fLn�f� � X � R � n � 
g
is equicontinuous� in particular if the assumptions of condition �c� of Lemma ���� corre�
sponding to condition �iii�� p�
�	� in ����� are satis�ed� or even weaker if the assumptions
of Lemma a�� are satis�ed� then using similar arguments as in the proof of Theorem � of
����� one can show that there exists a unique continuous function g � X � ���	� such that
L�g� � g on X� Suppose that g is normalized so that

R
g dm � 
� Then g restricted to

the limit set J is a version of the Radon�Nikodym derivative dm��dm� Moreover for every
continuous function f � X � R�

Ln�f� �� g

Z
f dm

uniformly onX� Also some additional ergodic properties of the system ���m��� for example
the weak Bernoulli property� can be proven as in �����
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